
Vision HDL Toolbox™
Reference

R2021a

How to Contact MathWorks

Latest news: www.mathworks.com

Sales and services: www.mathworks.com/sales_and_services

User community: www.mathworks.com/matlabcentral

Technical support: www.mathworks.com/support/contact_us

Phone: 508-647-7000

The MathWorks, Inc.
1 Apple Hill Drive
Natick, MA 01760-2098

Vision HDL Toolbox™ Reference
© COPYRIGHT 2015–2021 by The MathWorks, Inc.
The software described in this document is furnished under a license agreement. The software may be used or copied
only under the terms of the license agreement. No part of this manual may be photocopied or reproduced in any form
without prior written consent from The MathWorks, Inc.
FEDERAL ACQUISITION: This provision applies to all acquisitions of the Program and Documentation by, for, or through
the federal government of the United States. By accepting delivery of the Program or Documentation, the government
hereby agrees that this software or documentation qualifies as commercial computer software or commercial computer
software documentation as such terms are used or defined in FAR 12.212, DFARS Part 227.72, and DFARS 252.227-7014.
Accordingly, the terms and conditions of this Agreement and only those rights specified in this Agreement, shall pertain
to and govern the use, modification, reproduction, release, performance, display, and disclosure of the Program and
Documentation by the federal government (or other entity acquiring for or through the federal government) and shall
supersede any conflicting contractual terms or conditions. If this License fails to meet the government's needs or is
inconsistent in any respect with federal procurement law, the government agrees to return the Program and
Documentation, unused, to The MathWorks, Inc.

Trademarks
MATLAB and Simulink are registered trademarks of The MathWorks, Inc. See
www.mathworks.com/trademarks for a list of additional trademarks. Other product or brand names may be
trademarks or registered trademarks of their respective holders.
Patents
MathWorks products are protected by one or more U.S. patents. Please see www.mathworks.com/patents for
more information.
Revision History
March 2015 Online only New for Version 1.0 (Release R2015a)
September 2015 Online only Revised for Version 1.1 (Release R2015b)
March 2016 Online only Revised for Version 1.2 (Release R2016a)
September 2016 Online only Revised for Version 1.3 (Release R2016b)
March 2017 Online only Revised for Version 1.4 (Release R2017a)
September 2017 Online only Revised for Version 1.5 (Release R2017b)
March 2018 Online only Revised for Version 1.6 (Release 2018a)
September 2018 Online only Revised for Version 1.7 (Release 2018b)
March 2019 Online only Revised for Version 1.8 (Release 2019a)
September 2019 Online only Revised for Version 2.0 (Release 2019b)
March 2020 Online only Revised for Version 2.1 (Release 2020a)
September 2020 Online only Revised for Version 2.2 (Release 2020b)
March 2021 Online only Revised for Version 2.3 (Release 2021a)

https://www.mathworks.com
https://www.mathworks.com/sales_and_services
https://www.mathworks.com/matlabcentral
https://www.mathworks.com/support/contact_us
https://www.mathworks.com/trademarks
https://www.mathworks.com/patents

Blocks
1

System Objects
2

Functions
3

Apps and Tools
4

iii

Contents

Blocks

1

Bilateral Filter
2-D bilateral filtering
Library: Vision HDL Toolbox / Filtering

Description
The Bilateral Filter block filters images while preserving edges. Some applications of bilateral
filtering are denoising while preserving edges, separating texture from illumination, and cartooning
to enhance edges. The filter replaces each pixel at the center of a neighborhood by an average that is
calculated using spatial and intensity Gaussian filters. The block determines the filter coefficients
from:

• Spatial location in the neighborhood (similar to a Gaussian blur filter)
• Intensity difference from the neighborhood center value

The block provides two standard deviation parameters for independent control of the spatial and
intensity coefficients.

Ports
This block uses a streaming pixel interface with a pixelcontrol bus for frame control signals. This
interface enables the block to operate independently of image size and format. All Vision HDL
Toolbox blocks use the same streaming interface. The block accepts and returns a scalar pixel value
and a bus that contains five control signals. The control signals indicate the validity of each pixel and
its location in the frame. To convert a frame (pixel matrix) into a serial pixel stream and control
signals, use the Frame To Pixels block. For a full description of the interface, see “Streaming Pixel
Interface”.

Input

pixel — Single image pixel
scalar

Single image pixel of a pixel stream, specified as a scalar value representing intensity. This value is
interpreted on the range [0,1], assuming the entire range of the input data type. Integer and fixed-
point data types larger than 16 bits are not supported.

double and single data types are supported for simulation, but not for HDL code generation.
Data Types: uint8 | uint16 | int8 | int16 | fixed point | Boolean | double | single

ctrl — Control signals associated with pixel stream
pixelcontrol bus

The pixelcontrol bus contains five signals. The signals describe the validity of the pixel and its
location in the frame. For more information, see “Pixel Control Bus”.

1 Blocks

1-2

Data Types: bus

Output

pixel — Single image pixel
scalar

Single image pixel in a pixel stream, returned as a scalar value representing intensity. Integer and
fixed-point data types larger than 16 bits are not supported.

double and single data types are supported for simulation, but not for HDL code generation.
Data Types: uint8 | uint16 | int8 | int16 | fixed point | Boolean | double | single

ctrl — Control signals associated with pixel stream
pixelcontrol bus

The pixelcontrol bus contains five signals. The signals describe the validity of the pixel and its
location in the frame. For more information, see “Pixel Control Bus”.
Data Types: bus

Parameters
Main

Neighborhood size — Size of image region to average
3×3 (default) | 5×5 | 7×7 | 9×9 | 11×11 | 13×13 | 15×15

Size of the image region used to compute the average, specified as an N-by-N pixel square.

Spatial standard deviation — Spatial standard deviation target
0.5 (default) | positive real number

Spatial standard deviation target used to compute coefficients for the spatial Gaussian filter, specified
as a positive real number. This parameter has no limits, but recommended values are from 0.1 to 10.
At the high end, the distribution becomes flat and the coefficients are small. At the low end, the
distribution peaks in the center and has small coefficients in the rest of the neighborhood. These
boundary values also depend on the neighborhood size and the data type used for the coefficients.

Intensity standard deviation — Intensity standard deviation target
0.5 (default) | positive real number

Intensity standard deviation target used to compute coefficients for the intensity Gaussian filter,
specified as a positive real number. This parameter has no limits, but recommended values are from
0.1 to 10. At the high end, the distribution becomes flat and the coefficients are small. At the low end,
the distribution peaks in the center and has small coefficients in the rest of the neighborhood. These
boundary values also depend on the neighborhood size and the data type used for the coefficients.

When the intensity standard deviation is large, the bilateral filter acts more like a Gaussian blur filter,
because the intensity Gaussian has a lower peak. Conversely, when the intensity standard deviation is
smaller, edges in the intensity are preserved or enhanced.

Padding method — Method for padding boundary of input image
Constant (default) | Replicate | Symmetric | None

 Bilateral Filter

1-3

Select one of these methods for padding the boundary of the input image. For more information about
these methods, see “Edge Padding”.

• Constant — Interpret pixels outside the image frame as having a constant value.
• Replicate — Repeat the value of pixels at the edge of the image.
• Symmetric — Set the value of the padding pixels to mirror the edge of the image.
• None — Exclude padding logic. The block does not set the pixels outside the image frame to any

particular value. This option reduces the hardware resources used by the block and the blanking
required between frames but affects the accuracy of the output pixels at the edges of the frame.
To maintain pixel stream timing, the output frame is the same size as the input frame. However, to
avoid using pixels calculated from undefined padding values, mask off the KernelSize/2 pixels
around the edge of the frame for downstream operations. For details, see “Increase Throughput
with Padding None”.

Padding value — Value used to pad boundary of input image
0 (default) | integer

Specify an integer to pad the boundary of the input image. The block casts this value to the same data
type as the input pixel.
Dependencies

To enable this parameter, set the Padding method parameter to Constant.

Line buffer size — Size of line memory buffer
2048 (default) | positive integer

Specify a power of two that accommodates the number of active pixels in a single horizontal line.

If you specify a value that is not a power of two, the block uses the next largest power of two.

Data Types

Rounding mode — Rounding mode for internal fixed-point calculations
Floor (default) | Ceiling | Convergent | Nearest | Round | Zero

When the input is any integer or fixed-point data type, the algorithm uses fixed-point arithmetic for
internal calculations. This option does not apply when the input data type is single or double.

Saturate on integer overflow — Overflow mode for internal fixed-point calculations
on (default) | off

When the input is any integer or fixed-point data type, the algorithm uses fixed-point arithmetic for
internal calculations. By default, fixed-point values saturate on overflow. This option does not apply
when the input data type is single or double.

Coefficients Data Type — Method to determine data type of filter coefficients
Inherit: Same as first input (default) | fixdt(1,16,0) | data type expression

Specify an unsigned data type that can represent values less than 1. The coefficients usually require a
data type with more precision than the input data type. The block calculates the coefficients based on
the neighborhood size and the values of Intensity standard deviation and Spatial standard
deviation. Larger neighborhoods spread the Gaussian function such that each coefficient value is
smaller. A larger standard deviation flattens the Gaussian so that the coefficients are more uniform in
nature, and a smaller standard deviation produces a peaked response.

1 Blocks

1-4

Note If you try a data type and after quantization, more than half of the coefficients become zero, the
block issues a warning. If all the coefficients are zero after quantization, the block issues an error.
These messages mean that the block was unable to express the requested filter by using the data type
specified. To avoid this issue, choose a higher-precision coefficient data type or adjust the standard
deviation targets.

Output Data Type — Method to determine data type of output pixels
Inherit: Same as first input (default) | fixdt(1,16,0) | data type expression

The filtered pixel values are cast to this data type.

Tips
• When you use a block with an internal line buffer inside an Enabled Subsystem, the enable signal

pattern must maintain the timing of the pixel stream, including the minimum blanking intervals. If
the enable pattern corrupts the timing of the pixel stream, you might see partial output frames,
corrupted pixel stream control signals, or mismatches between Simulink and HDL simulation
results. You may need to extend the blanking intervals to accommodate for cycles when the enable
is low. For more information, see “Configure Blanking Intervals”.

Algorithms
The bilateral filter can be described as a Gaussian filter in the spatial dimension that modifies the
coefficients of a second Gaussian filter that operates on intensity.

The algorithm stores N-1 lines so that it can form an N-by-N matrix of pixels matching the
Neighborhood size. Then it applies two Gaussian filters on each neighborhood. The filter
coefficients are calculated from the spatial and intensity standard deviations.

The Subtract Center operation produces a pixel value of zero at the center of the neighborhood. For
hardware implementation, and for simulation of fixed-point or integer data types, the calculation in
the dashed region is implemented with a lookup table of precomputed values for each pixel. Because
the center value is always zero, u2 and eu are always one and are not computed. For floating-point
input, the simulation computes u2 and eu as shown. The output of the dashed region uses the
coefficient data type that you specified. The Q blocks in the diagram show quantization points.

The algorithm implements the final normalization step with a reciprocal lookup table in the hardware
implementation. The lookup table has 2048 locations, so the coefficient sum is quantized to the most

 Bilateral Filter

1-5

significant 11 bits. The reciprocal values use the output data type that you specified, plus a minimum
of two integer bits if the data type does not already include them. The reciprocal lookup value for a
zero sum is the maximum representable value in the coefficient data type. For floating-point
normalization, the simulation detects a zero sum and instead divides by eps() of the dividend.

The output pixel value is then cast to the output data type that you specified. The filter uses the entire
range of the data type, so if your color space uses less than the full range, you may need to rescale
the pixel values.

Note When filtering multicomponent (color) pixels, false colors can occur, unless the operation is
done in a color space based on human perception, such as CIELab. Bilateral filtering of the R'G'B'
color space is not recommended.

Latency

The latency of the block is the line buffer latency plus the latency of the kernel calculation. The line
buffer latency includes edge padding by default. The latency of the padding operation depends on the
size of the kernel. If edge padding is not necessary for your design, you can reduce the latency by
setting the Padding method parameter to None. When you use this option, the block latency does
not depend on your kernel size. To determine the exact latency for any configuration of the block,
measure the number of time steps between the input and output control signals.

Note When you use edge padding, use a horizontal blanking interval greater than twice the kernel
width. This interval lets the block finish processing one line before it starts processing the next one,
including adding padding pixels before and after the active pixels in the line. Standard streaming
video formats use a horizontal blanking interval of about 25% of the frame width. This interval is
much larger than the filters applied to each frame. When you disable edge padding, the horizontal
blanking interval must be at least 12 cycles and is independent of the kernel size. If you are using a
custom video format, set the horizontal blanking interval by using the Frame To Pixels block
parameters. The horizontal blanking interval is equal to Total pixels per line – Active pixels per
line or, equivalently, Front porch + Back porch. For more information, see “Configure Blanking
Intervals”.

Extended Capabilities
C/C++ Code Generation
Generate C and C++ code using Simulink® Coder™.

1 Blocks

1-6

This block supports C/C++ code generation for Simulink® accelerator and rapid accelerator modes
and for DPI component generation.

HDL Code Generation
Generate Verilog and VHDL code for FPGA and ASIC designs using HDL Coder™.

HDL Coder™ provides additional configuration options that affect HDL implementation and
synthesized logic.

HDL Architecture

This block has a single, default HDL architecture.

HDL Block Properties

ConstrainedOutputPi
peline

Number of registers to place at the outputs by moving existing delays
within your design. Distributed pipelining does not redistribute these
registers. The default is 0. For more details, see
“ConstrainedOutputPipeline” (HDL Coder).

InputPipeline Number of input pipeline stages to insert in the generated code.
Distributed pipelining and constrained output pipelining can move these
registers. The default is 0. For more details, see “InputPipeline” (HDL
Coder).

OutputPipeline Number of output pipeline stages to insert in the generated code.
Distributed pipelining and constrained output pipelining can move these
registers. The default is 0. For more details, see “OutputPipeline” (HDL
Coder).

See Also
Blocks
Frame To Pixels

Objects
visionhdl.BilateralFilter

Introduced in R2017b

 Bilateral Filter

1-7

Birds-Eye View
Transform front-facing camera image into top-down view
Library: Vision HDL Toolbox / Geometric Transforms

Description
The Birds-Eye View block warps a front-facing camera image into a top-down view. It uses a
hardware-efficient architecture that supports HDL code generation.

You must provide the homography matrix that describes the transform. This matrix can be calculated
from physical camera properties, or empirically derived by analyzing an image of a grid pattern taken
by the camera. The block uses the matrix to compute the transformed coordinates of each pixel. The
transform does not interpolate between pixel locations. Instead it rounds the result to the nearest
coordinate.

The block operates on a trapezoidal region of the input image below the vanishing point. These
images show the input region selected for transformation and the resulting top-down view.

You can specify the number of lines in the transformed region and the size of the output frame. If the
specified homography matrix cannot map from the requested number of lines to the requested output
size, the block returns a warning.

1 Blocks

1-8

Because the block replicates lines from the input region to create the larger output frame, it cannot
complete the transform of one frame before the next frame arrives. The block ignores any new input
frames while it is still transforming the previous frame. Therefore, depending on the stored lines and
output size, the block can drop input frames. This timing also enables the block to maintain the
blanking intervals of the input pixel stream.

Ports
This block uses a streaming pixel interface with a pixelcontrol bus for frame control signals. This
interface enables the block to operate independently of image size and format. All Vision HDL
Toolbox blocks use the same streaming interface. The block accepts and returns a scalar pixel value
and a bus that contains five control signals. The control signals indicate the validity of each pixel and
its location in the frame. To convert a frame (pixel matrix) into a serial pixel stream and control
signals, use the Frame To Pixels block. For a full description of the interface, see “Streaming Pixel
Interface”.

Input

pixel — Single image pixel
scalar

Single image pixel in a pixel stream, specified as a scalar that represents grayscale intensity.

double and single data types are supported for simulation, but not for HDL code generation.
Data Types: uint8 | uint16 | uint32 | int8 | int16 | int32 | fixed point | Boolean | double |
single

ctrl — Control signals associated with pixel stream
pixelcontrol bus

The pixelcontrol bus contains five signals. The signals describe the validity of the pixel and its
location in the frame. For more information, see “Pixel Control Bus”.
Data Types: bus

Output

pixel — Single image pixel
scalar

Single image pixel in the pixel stream, returned as a scalar representing grayscale intensity. The
output pixel data type is the same as the input pixel data type.

double and single data types are supported for simulation, but not for HDL code generation.
Data Types: uint8 | uint16 | uint32 | int8 | int16 | int32 | fixed point | Boolean | double |
single

ctrl — Control signals associated with pixel stream
pixelcontrol bus

The pixelcontrol bus contains five signals. The signals describe the validity of the pixel and its
location in the frame. For more information, see “Pixel Control Bus”.
Data Types: bus

 Birds-Eye View

1-9

Parameters
Homography matrix — Transfer function derived from camera parameters
[0.000100990123328 0 0;0.000412396945637 0.001302203393162
1.293171994e-06;-0.103019798961327 -0.255811259450009 -0.000222053779501]
(default) | 3-by-3 matrix

Transfer function derived from camera parameters, specified as a 3-by-3 matrix.

The homography matrix, h, is derived from four intrinsic parameters of the physical camera setup:
the focal length, pitch, height, and principal point (from a pinhole camera model). The default value is
the matrix for the camera setup used in the “Lane Detection” example.

This matrix can be calculated from physical camera properties, or empirically derived by analyzing an
image of a grid test pattern taken by the camera. See estimateGeometricTransform or “Single
Camera Calibrator App” (Computer Vision Toolbox).

Maximum buffer size, in pixels — Number of input pixels to buffer
40000 (default) | integer

Number of input pixels to buffer, specified as an integer. Compute this value from Number of input
lines to buffer*ActivePixelsPerLine. The block uses a memory of this size to store the input pixels. If
you specify a value that is not a power of two, the block uses the next largest power of two.

Number of input lines to buffer — Number of lines to transform
54 (default) | integer

Number of lines to transform, specified as an integer. The block stores and transforms this number of
lines into the output bird's-eye view image, starting at the vanishing point as determined by the
Homography matrix.

Storing the full input frame uses too much memory to implement the algorithm without off-chip
storage. Therefore, for a hardware implementation, choose a smaller region to store and transform,
one that generates an acceptable output frame size.

For example, using the default Homography matrix with an input image of 640-by-480 pixels, the
full-sized transform results in a 900-by-640 output image. Analysis of the input-to-output x-coordinate
mapping shows that around 50 lines of the input image are required to generate the top 700 lines of
the bird's-eye view output image. This number of input lines can be stored using on-chip memory. The
vanishing point for the default camera setup is around line 200, and lines above that point do not
contribute to the resulting bird's-eye view. Therefore, the block can store only input lines 200–250 for
transformation.

Output active pixels — Horizontal size of output frame
640 (default) | integer

Horizontal size of output frame, specified as an integer. This parameter is the number of active pixels
in each output line.

Output active lines — Vertical size of output frame
700 (default) | integer

Vertical size of output frame, specified as an integer. This parameter is the number of active lines in
each output frame.

1 Blocks

1-10

Algorithms
The transform from input pixel coordinate (x,y) to the bird's-eye pixel coordinate is derived from the
homography matrix, h. The homography matrix is based on physical parameters and therefore is a
constant for a particular camera installation.

(x , y) = round
h11x + h12y + h13
h31x + h32y + h33

,
h21x + h22y + h23
h31x + h32y + h33

The implementation of the bird's-eye transform in hardware does not directly perform this
calculation. Instead, the block precomputes lookup tables for the horizontal and vertical aspects of
the transform.

First, the block stores the input lines starting from the precomputed vanishing point. The stored
pixels form a trapezoid, with short lines near the vanishing point and wider lines near the camera.
This storage uses Maximum buffer size, in pixels memory locations.

The horizontal lookup table contains interpolation parameters that describe the stretch of each line of
the trapezoidal input region to the requested width of the output frame. Lines that fall closer to the
vanishing point are stretched more than lines nearer to the camera.

The vertical lookup table contains the y-coordinate mapping, and how many times each line is
repeated to fill the requested height of the output frame. Near the vanishing point, one input line
maps to many output lines, while each line nearer the camera maps to a diminishing number of
output lines.

The lookup tables use 3*Number of input lines to buffer memory locations.

Extended Capabilities
C/C++ Code Generation
Generate C and C++ code using Simulink® Coder™.

This block supports C/C++ code generation for Simulink accelerator and rapid accelerator modes
and for DPI component generation.

HDL Code Generation
Generate Verilog and VHDL code for FPGA and ASIC designs using HDL Coder™.

HDL Coder provides additional configuration options that affect HDL implementation and synthesized
logic.

 Birds-Eye View

1-11

HDL Architecture

This block has a single, default HDL architecture.

HDL Block Properties

ConstrainedOutputPi
peline

Number of registers to place at the outputs by moving existing delays
within your design. Distributed pipelining does not redistribute these
registers. The default is 0. For more details, see
“ConstrainedOutputPipeline” (HDL Coder).

InputPipeline Number of input pipeline stages to insert in the generated code.
Distributed pipelining and constrained output pipelining can move these
registers. The default is 0. For more details, see “InputPipeline” (HDL
Coder).

OutputPipeline Number of output pipeline stages to insert in the generated code.
Distributed pipelining and constrained output pipelining can move these
registers. The default is 0. For more details, see “OutputPipeline” (HDL
Coder).

See Also
Blocks
Frame To Pixels | Warp

Objects
visionhdl.BirdsEyeView

Functions
estimateGeometricTransform | imwarp

Topics
“Single Camera Calibrator App” (Computer Vision Toolbox)

Introduced in R2017b

1 Blocks

1-12

Chroma Resampler
Downsample or upsample chrominance component
Library: Vision HDL Toolbox / Conversions

Description
The Chroma Resampler block downsamples or upsamples a pixel stream.

• Downsampling reduces bandwidth and storage requirements in a video system by combining pixel
chrominance components over multiple pixels. You can specify a filter to prevent aliasing by
selecting the default filter or by entering coefficients.

• Upsampling restores a signal to its original rate. To calculate the extra sample, you can use
interpolation or replication.

The block accepts luma and chrominance components. The block does not modify the luma
component, and applies delay to align it with the resampled chrominance outputs. The rate of the
output luma component is the same as the rate of the input.

Ports
This block uses a streaming pixel interface with a pixelcontrol bus for frame control signals. This
interface enables the block to operate independently of image size and format. All Vision HDL
Toolbox blocks use the same streaming interface. The block accepts and returns a scalar pixel value
and a bus that contains five control signals. The control signals indicate the validity of each pixel and
its location in the frame. To convert a frame (pixel matrix) into a serial pixel stream and control
signals, use the Frame To Pixels block. For a full description of the interface, see “Streaming Pixel
Interface”.

Input

pixel — Pixel in Y'CbCr color space
vector of three values

Pixel in Y'CbCr color space, specified as a vector of three values. The values can be uint8, uint16,
or fixdt(0,N,0), where N is from 8 through 16.

double and single data types are supported for simulation, but not for HDL code generation.
Data Types: single | double | uint8 | uint16 | fixed point

ctrl — Control signals associated with pixel stream
pixelcontrol bus

The pixelcontrol bus contains five signals. The signals describe the validity of the pixel and its
location in the frame. For more information, see “Pixel Control Bus”.
Data Types: bus

 Chroma Resampler

1-13

Output

pixel — Pixel in Y'CbCr color space
vector of three values

Pixel in Y'CbCr color space, returned as a vector of three values. The data type of the output pixels is
the same as the data type of the input pixels.

double and single data types are supported for simulation, but not for HDL code generation.
Data Types: single | double | uint8 | uint16 | fixed point

ctrl — Control signals associated with pixel stream
pixelcontrol bus

The pixelcontrol bus contains five signals. The signals describe the validity of the pixel and its
location in the frame. For more information, see “Pixel Control Bus”.
Data Types: bus

Parameters
Main

Resampling — Type of resampling
4:4:4 to 4:2:2 (default) | 4:2:2 to 4:4:4

If you select 4:4:4 to 4:2:2, the block performs a downsampling operation. If you select 4:2:2
to 4:4:4, the block performs an upsampling operation.

Antialiasing filter — Lowpass filter to follow downsample operation
Auto (default) | Property | None

If you select Auto, the block uses a built-in lowpass filter. If you select Property, the Horizontal
filter coefficients parameter appears on the dialog box. If you select None, the block does not filter
the input signal.
Dependencies

This parameter is visible when you set Resampling to 4:4:4 to 4:2:2.

Horizontal filter coefficients — Coefficients for the antialiasing filter
[0.2 0.6 0.2] (default) | vector

Coefficients for the antialiasing filter, specified as a vector.
Dependencies

This parameter is visible if you set Resampling to 4:4:4 to 4:2:2 and Antialiasing filter to
Property.

Interpolation — Interpolation method for an upsample operation
Linear (default) | Pixel replication

If you select Linear, the block uses linear interpolation to calculate the missing values. If you select
Pixel replication, the block repeats the chrominance values of the preceding pixel to create the
missing pixel.

1 Blocks

1-14

Dependencies

This parameter is visible if you set Resampling to 4:2:2 to 4:4:4.

Data Types

The parameters on this tab appear only when they are relevant. If you configure the block so that no
filter coefficients are needed, or no rounding or overflow is possible, the irrelevant parameter is
hidden.

Rounding mode — Rounding method for internal fixed-point calculations
Floor (default) | Ceiling | Convergent | Nearest | Round | Zero

Rounding mode applies when you select linear interpolation, or include an antialiasing filter.

Saturate on integer overflow — Overflow action for internal fixed-point calculations
off (default) | on

Overflow can occur when you include an antialiasing filter. By default, fixed-point values wrap around
on overflow.

Filter coefficients — Data type for antialiasing filter coefficients
fixdt(1,16,0) (default) | data type expression

This parameter applies when you set Antialiasing filter to Auto or Property.

Tips
• When you use a block with an internal line buffer inside an Enabled Subsystem, the enable signal

pattern must maintain the timing of the pixel stream, including the minimum blanking intervals. If
the enable pattern corrupts the timing of the pixel stream, you might see partial output frames,
corrupted pixel stream control signals, or mismatches between Simulink and HDL simulation
results. You may need to extend the blanking intervals to accommodate for cycles when the enable
is low. For more information, see “Configure Blanking Intervals”.

Algorithms
The default antialiasing filter is a 29-tap lowpass filter that matches the default Chroma Resampling
block in Computer Vision Toolbox™. In the frequency response of this filter, the passband, [–0.25
0.25], occupies half of the total bandwidth. This filter suppresses aliasing after 4:4:4 to 4:2:2
downsampling.

 Chroma Resampler

1-15

Whether you use the default filter or specify your own coefficients, the filter is implemented in HDL
using a fully parallel architecture. To reduce the number of multipliers, HDL code generation takes
advantage of symmetric, unity, or zero-value coefficients.

The block pads the edge of the image with symmetric pixel values. See “Edge Padding”. Also, if the
frame is an odd number of pixels wide, the block symmetrically pads the line. This accommodation
makes the block more resilient to video timing variation.

Latency

The latency is the number of cycles between the first valid input pixel and the first valid output pixel.
When you use an antialiasing filter, the latency depends on the size and value of the filter coefficients.
The FIR delay can be less than the number of coefficients because the block optimizes out duplicate
or zero-value coefficients.

Block Configuration Latency
Downsample (4:4:4 to 4:2:2); no filter 3
Downsample (4:4:4 to 4:2:2); with filter 4+(N/2)+FIR delay, where N = number of filter

coefficients
Upsample (4:2:2 to 4:4:4); replication 3
Upsample (4:2:2 to 4:4:4); interpolation 5

For example, the latency for a downsample using the default filter is 30 cycles.

Note When you use edge padding, use a horizontal blanking interval greater than twice the kernel
width. This interval lets the block finish processing one line before it starts processing the next one,
including adding padding pixels before and after the active pixels in the line. Standard streaming

1 Blocks

1-16

video formats use a horizontal blanking interval of about 25% of the frame width. This interval is
much larger than the filters applied to each frame. When you disable edge padding, the horizontal
blanking interval must be at least 12 cycles and is independent of the kernel size. If you are using a
custom video format, set the horizontal blanking interval by using the Frame To Pixels block
parameters. The horizontal blanking interval is equal to Total pixels per line – Active pixels per
line or, equivalently, Front porch + Back porch. For more information, see “Configure Blanking
Intervals”.

Extended Capabilities
C/C++ Code Generation
Generate C and C++ code using Simulink® Coder™.

This block supports C/C++ code generation for Simulink accelerator and rapid accelerator modes
and for DPI component generation.

HDL Code Generation
Generate Verilog and VHDL code for FPGA and ASIC designs using HDL Coder™.

HDL Coder provides additional configuration options that affect HDL implementation and synthesized
logic.

HDL Architecture

This block has a single, default HDL architecture.

HDL Block Properties

ConstrainedOutputPi
peline

Number of registers to place at the outputs by moving existing delays
within your design. Distributed pipelining does not redistribute these
registers. The default is 0. For more details, see
“ConstrainedOutputPipeline” (HDL Coder).

InputPipeline Number of input pipeline stages to insert in the generated code.
Distributed pipelining and constrained output pipelining can move these
registers. The default is 0. For more details, see “InputPipeline” (HDL
Coder).

OutputPipeline Number of output pipeline stages to insert in the generated code.
Distributed pipelining and constrained output pipelining can move these
registers. The default is 0. For more details, see “OutputPipeline” (HDL
Coder).

See Also
Blocks
Chroma Resampling | Frame To Pixels

Objects
visionhdl.ChromaResampler

Introduced in R2015a

 Chroma Resampler

1-17

Closing
Morphological closing of binary pixel data
Library: Vision HDL Toolbox / Morphological Operations

Description
The Closing block performs morphological dilation followed by morphological erosion by using the
same neighborhood for both calculations. The block operates on a stream of binary intensity values.
You can specify a neighborhood, or structuring element, of up to 32-by-32 pixels.

Note This block matches the behavior of the Closing block in Computer Vision Toolbox and of the
combination of imerode(imdilate()) in Image Processing Toolbox™. However, it does not match
the edge behavior of the imclose function in Image Processing Toolbox. imclose assumes that
white is the foreground color of a binary image, which can result in differences in edge behavior.

This block uses a streaming pixel interface with a bus for frame control signals. This interface
enables the block to operate independently of image size and format. The pixel ports on this block
support single pixel streaming or multipixel streaming. Single pixel streaming accepts and returns a
single pixel value each clock cycle. Multipixel streaming accepts and returns 4 or 8 pixels per clock
cycle to support high-frame-rate or high-resolution formats. Along with the pixel, the block accepts
and returns a pixelcontrol bus that contains five control signals. The control signals indicate the
validity of each pixel and their location in the frame. For multipixel streaming, one set of control
signals applies to all four or eight pixels in the vector. To convert a frame (pixel matrix) into a serial
pixel stream and control signals, use the Frame To Pixels block. For a full description of the interface,
see “Streaming Pixel Interface”.

Ports
Input

pixel — Boolean input pixel or multipixel vector
scalar | vector

This block supports single pixel streaming or multipixel streaming. For single pixel streaming, specify
a single input pixel as a scalar Boolean value. For multipixel streaming, specify a vector of four or
eight Boolean values. For details of how to set up your model for multipixel streaming, see “Filter
Multipixel Video Streams”.
Data Types: Boolean

ctrl — Control signals associated with pixel stream
pixelcontrol bus

1 Blocks

1-18

The pixelcontrol bus contains five signals. The signals describe the validity of the pixel and its
location in the frame. For more information, see “Pixel Control Bus”.

For multipixel streaming, each vector of pixel values has one set of control signals. Because the
vector has only one valid signal, the pixels in the vector must be either all valid or all invalid. The
hStart and vStart signals apply to the pixel with the lowest index in the vector. The hEnd and
vEnd signals apply to the pixel with the highest index in the vector.
Data Types: bus

Output

pixel — Boolean output pixel or multipixel vector
scalar | vector

This block supports single pixel streaming or multipixel streaming. When using single pixel
streaming, the block returns a single pixel as a scalar Boolean value. When using multipixel
streaming, the block returns a vector of Boolean values. This vector is the same size as the input
pixel vector. For details of how to set up your model for multipixel streaming, see “Filter Multipixel
Video Streams”.
Data Types: Boolean

ctrl — Control signals associated with pixel stream
pixelcontrol bus

The pixelcontrol bus contains five signals. The signals describe the validity of the pixel and its
location in the frame. For more information, see “Pixel Control Bus”.

For multipixel streaming, each vector of pixel values has one set of control signals. Because the
vector has only one valid signal, the pixels in the vector must be either all valid or all invalid. The
hStart and vStart signals apply to the pixel with the lowest index in the vector. The hEnd and
vEnd signals apply to the pixel with the highest index in the vector.
Data Types: bus

Parameters
Neighborhood — Pixel neighborhood
[0,1,0; 1,1,1; 0,1,0] (default) | vector or matrix of 1s and 0s

Pixel neighborhood, specified as a vector or matrix of binary values.

The block supports neighborhoods of up to 32-by-32 pixels. To use a structuring element, specify
Neighborhood as getnhood(strel(shape)).

When you use multipixel vector input, the neighborhood must be at least two pixels in each
dimension.

Line buffer size — Size of line memory buffer
2048 (default) | positive integer

Specify a power of two that accommodates the number of active pixels in a single horizontal line.

If you specify a value that is not a power of two, the block uses the next largest power of two. The
block allocates (neighborhood lines – 1)-by-Line buffer size memory locations to store the pixels.

 Closing

1-19

Padding method — Method for padding
Constant (default) | None

Select one of these methods for padding the boundary of the input image. For more information about
these methods, see “Edge Padding”.

• Constant — The block pads the image with zeros for the dilation operation and with ones for the
erosion operation. These values prevent closing at the boundaries of the active frame.

• None — Exclude padding logic. The block does not set the pixels outside the image frame to any
particular value. This option reduces the hardware resources used by the block and the blanking
required between frames but affects the accuracy of the output pixels at the edges of the frame.
To maintain pixel stream timing, the output frame is the same size as the input frame. However, to
avoid using pixels calculated from undefined padding values, mask off the KernelSize/2 pixels
around the edge of the frame for downstream operations. For details, see “Increase Throughput
with Padding None”.

Tips
• When you use a block with an internal line buffer inside an Enabled Subsystem, the enable signal

pattern must maintain the timing of the pixel stream, including the minimum blanking intervals. If
the enable pattern corrupts the timing of the pixel stream, you might see partial output frames,
corrupted pixel stream control signals, or mismatches between Simulink and HDL simulation
results. You may need to extend the blanking intervals to accommodate for cycles when the enable
is low. For more information, see “Configure Blanking Intervals”.

Algorithms
Latency

The total latency of the block is the line buffer latency plus the latency of the kernel calculation.
Morphological closing is a compound operation, so this block contains a second line buffer between
the dilation kernel and the erosion kernel. To determine the exact latency for any configuration of the
block, monitor the number of time steps between the input control signals and the output control
signals.

The latency of the line memory includes edge padding. The latency of the kernel depends on the
neighborhood size.

1 Blocks

1-20

Note When you use edge padding, use a horizontal blanking interval greater than twice the kernel
width. This interval lets the block finish processing one line before it starts processing the next one,
including adding padding pixels before and after the active pixels in the line. Standard streaming
video formats use a horizontal blanking interval of about 25% of the frame width. This interval is
much larger than the filters applied to each frame. When you disable edge padding, the horizontal
blanking interval must be at least 12 cycles and is independent of the kernel size. If you are using a
custom video format, set the horizontal blanking interval by using the Frame To Pixels block
parameters. The horizontal blanking interval is equal to Total pixels per line – Active pixels per
line or, equivalently, Front porch + Back porch. For more information, see “Configure Blanking
Intervals”.

Extended Capabilities
C/C++ Code Generation
Generate C and C++ code using Simulink® Coder™.

This block supports C/C++ code generation for Simulink accelerator and rapid accelerator modes
and for DPI component generation.

HDL Code Generation
Generate Verilog and VHDL code for FPGA and ASIC designs using HDL Coder™.

HDL Coder provides additional configuration options that affect HDL implementation and synthesized
logic.
HDL Architecture

This block has a single, default HDL architecture.
HDL Block Properties

ConstrainedOutputPi
peline

Number of registers to place at the outputs by moving existing delays
within your design. Distributed pipelining does not redistribute these
registers. The default is 0. For more details, see
“ConstrainedOutputPipeline” (HDL Coder).

InputPipeline Number of input pipeline stages to insert in the generated code.
Distributed pipelining and constrained output pipelining can move these
registers. The default is 0. For more details, see “InputPipeline” (HDL
Coder).

OutputPipeline Number of output pipeline stages to insert in the generated code.
Distributed pipelining and constrained output pipelining can move these
registers. The default is 0. For more details, see “OutputPipeline” (HDL
Coder).

Restrictions

You cannot generate HDL for this block inside a Resettable Synchronous Subsystem.

See Also
Dilation | Erosion | Frame To Pixels | Opening | visionhdl.Closing

Topics
“Types of Morphological Operations” (Image Processing Toolbox)

 Closing

1-21

“Structuring Elements” (Image Processing Toolbox)

Introduced in R2015a

1 Blocks

1-22

Color Space Converter
Convert color information between color spaces
Library: Vision HDL Toolbox / Conversions

Description
The Color Space Converter block converts between R'G'B' and Y'CbCr color spaces, and also converts
R'G'B' to intensity.

Note The Color Space Converter block operates on gamma-corrected color spaces. However, for
simplicity, the block and mask labels do not include the prime notation.

Ports
This block uses a streaming pixel interface with a pixelcontrol bus for frame control signals. This
interface enables the block to operate independently of image size and format. All Vision HDL
Toolbox blocks use the same streaming interface. The block accepts and returns a scalar pixel value
and a bus that contains five control signals. The control signals indicate the validity of each pixel and
its location in the frame. To convert a frame (pixel matrix) into a serial pixel stream and control
signals, use the Frame To Pixels block. For a full description of the interface, see “Streaming Pixel
Interface”.

Input

pixel — Single image pixel
vector of three values

Single image pixel in Y'CbCr or R'G'B' color space, specified as a vector of three values. The values
can be uint8, uint16, or fixdt(0,N,0), where N is from 8 through 16.

double and single data types are supported for simulation, but not for HDL code generation.
Data Types: single | double | uint8 | uint16 | fixed point

ctrl — Control signals associated with pixel stream
pixelcontrol bus

The pixelcontrol bus contains five signals. The signals describe the validity of the pixel and its
location in the frame. For more information, see “Pixel Control Bus”.
Data Types: bus

Output

pixel — Single image pixel in new colorspace
scalar | vector of three values

 Color Space Converter

1-23

Single image pixel in intensity, Y'CbCr, or R'G'B' color space, returned as a scalar or a vector of three
values. The data type of the output pixels is the same as the data type of the input pixels.

double and single data types are supported for simulation, but not for HDL code generation.
Data Types: single | double | uint8 | uint16 | fixed point

ctrl — Control signals associated with pixel stream
pixelcontrol bus

The pixelcontrol bus contains five signals. The signals describe the validity of the pixel and its
location in the frame. For more information, see “Pixel Control Bus”.
Data Types: bus

Parameters
Conversion — Type of color space conversion
RGB to YCbCr (default) | YCbCr to RGB | RGB to intensity

The block accepts input as a vector of three values representing a single pixel. If you choose RGB to
intensity, the output is a scalar value. Otherwise, the output is a vector of three values.

Use conversion specified by — Conversion equation
Rec. 601 (SDTV) (default) | Rec. 709 (HDTV)

Conversion equation used between R'G'B' and Y'CbCr color spaces.

Dependencies

This parameter applies only when you set Conversion to RGB to YCbCr or YCbCr to RGB.

Scanning standard — HDTV scanning standard
1250/50/2:1 (default) | 1125/60/2:1

Scanning standard used to convert between R'G'B' and Y'CbCr color spaces in HDTV format.

Dependencies

This parameter applies when you set Use conversion specified by to Rec. 709 (HDTV).

Algorithms
Conversion Between R'G'B' and Y'CbCr Color Spaces

The following equations define R'G'B' to Y'CbCr conversion and Y'CbCr to R'G'B' conversion:

Y ′
Cb
Cr

=
16
128
128

+ Α ×
R′
G′
B′

R′
G′
B′

= Β ×
Y ′
Cb
Cr

−
16

128
128

1 Blocks

1-24

The values in matrices A and B are based on your choices for the Use conversion specified by and
Scanning standard parameters.

Matrix Use conversion specified by
= Rec. 601 (SDTV)

Use conversion specified by = Rec. 709 (HDTV)
Scanning standard =
1125/60/2:1

Scanning standard =
1250/50/2:1

A 0.25678824 0.50412941 0.09790588
−0.1482229 −0.29099279 0.43921569
0.43921569 −0.36778831 −0.07142737

 0.18258588 0.61423059 0.06200706
 ‐0.10064373 ‐0.33857195 0.43921569
 0.43921569 ‐0.39894216 ‐0.04027352

0.25678824 0.50412941 0.09790588
−0.1482229 −0.29099279 0.43921569
0.43921569 −0.36778831 −0.07142737

B 1.1643836 0 1.5960268
1.1643836 −0.39176229 −0.81296765
1.1643836 2.0172321 0

1.16438356 0 1.79274107
1.16438356 ‐0.21324861 ‐0.53290933
1.16438356 2.11240179 0

1.1643836 0 1.5960268
1.1643836 −0.39176229 −0.81296765
1.1643836 2.0172321 0

Conversion from R'G'B' to Intensity

The following equation defines conversion from the R'G'B' color space to intensity:

intensity = 0.299 0.587 0.114
R′
G′
B′

Data Types

For fixed-point and integer input, the block converts matrix A to fixdt(1,17,16), and matrix B to
fixdt(1,17,14).

For double or single input, the block applies the conversion matrices in double type, and scales the
Y'CbCr offset vector ([16,128,128]) by 1/255. The block saturates double or single R'G'B' and
intensity outputs to the range [0,1].

The Y'CbCr standard includes headroom and footroom. For 8-bit data, luminance values in the range
16–235 and chrominance values in the range 16–240 are valid. The Color Space Converter block pins
out-of-range input to these limits before calculating the conversion. The block scales the offset vector
and the allowed headroom and footroom depending on the word length of the input signals. For
example, when you convert a Y'CbCr input of type fixdt(0,10,0) to R'G'B', the block multiplies the
offset vector by 2(10 – 8) = 4. As a result, the valid luminance range becomes 64–940 and the valid
chrominance range becomes 64–960.

Latency

Blocks with R'G'B' input have a latency of 9 cycles and blocks with Y'CbCr input have a latency of 10
cycles. The extra cycle is required to check for and correct headroom and footroom violations.

Note When you use edge padding, use a horizontal blanking interval greater than twice the kernel
width. This interval lets the block finish processing one line before it starts processing the next one,
including adding padding pixels before and after the active pixels in the line. Standard streaming
video formats use a horizontal blanking interval of about 25% of the frame width. This interval is
much larger than the filters applied to each frame. When you disable edge padding, the horizontal
blanking interval must be at least 12 cycles and is independent of the kernel size. If you are using a
custom video format, set the horizontal blanking interval by using the Frame To Pixels block
parameters. The horizontal blanking interval is equal to Total pixels per line – Active pixels per

 Color Space Converter

1-25

line or, equivalently, Front porch + Back porch. For more information, see “Configure Blanking
Intervals”.

Extended Capabilities
C/C++ Code Generation
Generate C and C++ code using Simulink® Coder™.

This block supports C/C++ code generation for Simulink accelerator and rapid accelerator modes
and for DPI component generation.

HDL Code Generation
Generate Verilog and VHDL code for FPGA and ASIC designs using HDL Coder™.

HDL Coder provides additional configuration options that affect HDL implementation and synthesized
logic.

HDL Architecture

This block has a single, default HDL architecture.

HDL Block Properties

ConstrainedOutputPi
peline

Number of registers to place at the outputs by moving existing delays
within your design. Distributed pipelining does not redistribute these
registers. The default is 0. For more details, see
“ConstrainedOutputPipeline” (HDL Coder).

InputPipeline Number of input pipeline stages to insert in the generated code.
Distributed pipelining and constrained output pipelining can move these
registers. The default is 0. For more details, see “InputPipeline” (HDL
Coder).

OutputPipeline Number of output pipeline stages to insert in the generated code.
Distributed pipelining and constrained output pipelining can move these
registers. The default is 0. For more details, see “OutputPipeline” (HDL
Coder).

See Also
Color Space Conversion | Frame To Pixels | visionhdl.ColorSpaceConverter

Introduced in R2015a

1 Blocks

1-26

Corner Detector
Find corners using FAST or Harris algorithm
Library: Vision HDL Toolbox / Analysis & Enhancement

Description
The Corner Detector block detects corners by using the features-from-accelerated-segment test
(FAST) algorithm or by the intersecting edges (Harris) algorithm . For each pixel, if the pixel is a
corner, the block returns the corner metric. If the pixel is not a corner, the block returns a pixel value
of zero.

The FAST algorithm tests a circular area around the potential center of the corner. The test detects a
corner if a contiguous section of pixels are either brighter than the center plus a threshold or darker
than the center minus a threshold. You can specify a minimum contrast threshold as a parameter or
port and select from three rules to define a corner. These rules specify how many pixels in a circle of
pixels must exceed the minimum contrast for the center pixel to be considered a corner. The block
performs parallel tests of all combinations of contiguous pixels around the circle. FAST uses very
little hardware resources

The Harris algorithm computes horizontal and vertical gradients, filters the gradient components
with a circular 5-by-5 Gaussian filter, and computes a metric that represents the strength of the
corner. You can specify a threshold that determines the level at which corners are detected. The block
returns a corner for pixels where the metric exceeds this threshold. The Harris algorithm uses more
hardware resources than the FAST algorithm but can detect corners that the FAST algorithm might
not find.

Ports
This block uses a streaming pixel interface with a pixelcontrol bus for frame control signals. This
interface enables the block to operate independently of image size and format. All Vision HDL
Toolbox blocks use the same streaming interface. The block accepts and returns a scalar pixel value
and a bus that contains five control signals. The control signals indicate the validity of each pixel and
its location in the frame. To convert a frame (pixel matrix) into a serial pixel stream and control
signals, use the Frame To Pixels block. For a full description of the interface, see “Streaming Pixel
Interface”.

Input

pixel — Single image pixel
scalar

Single image pixel in a pixel stream, specified as a scalar that represents grayscale intensity.

double and single data types are supported for simulation, but not for HDL code generation.
Data Types: uint8 | uint16 | uint32 | int8 | int16 | int32 | fixed point | double | single

 Corner Detector

1-27

ctrl — Control signals associated with pixel stream
pixelcontrol bus

The pixelcontrol bus contains five signals. The signals describe the validity of the pixel and its
location in the frame. For more information, see “Pixel Control Bus”.
Data Types: bus

minC — Threshold that indicates corner for FAST algorithm
nonnegative integer

Threshold that indicates a corner for the FAST algorithm, specified as a nonnegative integer. Each
pixel in the circle is subtracted from the center pixel value, and only those differences that exceed
this threshold are used to determine if the center pixel is a corner and to calculate the output metric.
This value is cast to the same data type as the input pixel.

double and single data types are supported for simulation, but not for HDL code generation.

Dependencies

To enable this port, set the Method parameter to one of the FAST options and set the Source of
minimum contrast value parameter to Input port.
Data Types: single | double | uint8 | uint16 | uint32 | uint64 | fixed point

thresh — Threshold that indicates corner for Harris algorithm
nonnegative integer

Threshold that indicates a corner for the Harris algorithm, specified as a nonnegative integer. This
value represents an approximation of the eigenvalues of the Harris matrix calculated from the
gradient results. The block returns a corner for pixels where the eigenvalue metric exceeds this
threshold. This value is cast to the same data type as the output pixel. The corner metrics are in the
range of a fourth power of the input pixel values. For example, for an 8-bit input pixel, the full-
precision output size is 44 bits.

double and single data types are supported for simulation, but not for HDL code generation.

Dependencies

To enable this port, set the Method parameter to Harris and set the Source of threshold value
parameter to Input port.
Data Types: single | double | uint8 | uint16 | uint32 | uint64 | fixed point

Output

corner — Metric that indicates whether pixel is a corner
scalar

Metric that indicates whether the pixel is a corner, returned as a scalar of the numeric type specified
by the Output data type parameter. When the pixel is not a corner, the block returns zero for this
value.

For corners detected with the FAST algorithm, this value is a contrast metric computed by using the
sum-of-absolute-difference (SAD) of the pixels around the circle with the center pixel value. The
metric includes only those differences that exceed the threshold.

1 Blocks

1-28

For corners detected with the Harris algorithm, this value is the approximation of the eigenvalues of
the Harris matrix calculated from the gradient results.

double and single data types are supported for simulation, but not for HDL code generation.
Data Types: uint8 | uint16 | uint32 | int8 | int16 | int32 | fixed point | double | single

ctrl — Control signals associated with pixel stream
pixelcontrol bus

The pixelcontrol bus contains five signals. The signals describe the validity of the pixel and its
location in the frame. For more information, see “Pixel Control Bus”.
Data Types: bus

Parameters
Main

Method — Detection method
FAST 5 of 8 (default) | FAST 7 of 12 | FAST 9 of 16 | Harris

Select the Harris algorithm, or the size of the circle for the FAST algorithm. The three FAST options
specify how many contiguous pixels on the circle must exceed the threshold for the center pixel to be
marked as a corner. For the circles of 8, 12, and 16 pixels shown in these figures, the block detects a
corner when 5, 7, or 9 contiguous pixels,respectively, are above the threshold. The block checks for
this number of contiguous pixels anywhere on the circle. The block uses a kernel of size 3-by-3 for
FAST 5 of 8, 5-by-5 for FAST 7 of 12, and 7-by-7 for FAST 9 of 16.

Source of minimum contrast value — Source for threshold that indicates corner for FAST
algorithm
Property (default) | Input port

Specify Property to set the threshold by using the MinContrast value parameter. Specify Input
port to enable the minC port.

Dependencies

To enable this parameter, set the Method parameter to one of the FAST options.

 Corner Detector

1-29

MinContrast value — Threshold that indicates corner for FAST algorithm
20 (default) | nonnegative integer

Each pixel in the circle is subtracted from the center pixel value, and only those differences that
exceed this threshold are used to determine if the center pixel is a corner and to calculate the output
metric. This value is cast to the same data type as the input pixel.
Dependencies

To enable this parameter, set the Method parameter to one of the FAST options and set the Source
of minimum contrast value parameter to Property.

Source of threshold value — Source for threshold that indicates corner for Harris
algorithm
Property (default) | Input port

Specify Property to set the threshold by using the Threshold value parameter. Specify Input
port to enable the thresh port.

Dependencies

To enable this parameter, set the Method parameter to Harris.

Threshold value — Threshold that indicates corner for Harris algorithm
15000 (default) | nonnegative integer

This value represents an approximation of the eigenvalues of the Harris matrix calculated from the
gradient results. The block returns a corner for pixels where the metric exceeds this threshold. For
details, see the “Harris Corner Detection” example. This value is cast to the same data type as the
output corner. The corner metric is in the range of a fourth power of the input pixel values. For
example, for an 8-bit input pixel, the full-precision output size is 44 bits.

Dependencies

To enable this parameter, set the Method parameter to Harris and set the Source of threshold
value parameter to Property.

Line buffer size — Size of line buffer
2048 (default) | integer

Specify a power of two that accommodates the number of active pixels in a single horizontal line.

If you specify a value that is not a power of two, the block uses the next largest power of two. The
block allocates (N – 1)-by-Line buffer size memory locations to store the pixels. N is the size of the
kernel.

The block uses a kernel of size 3-by-3 when the Method parameter is FAST 5 of 8, 5-by-5 when
Method is FAST 7 of 12, and 7-by-7 when Method is FAST 9 of 16.

When you set Method to Harris, the block uses one 1-by-3 kernel and one 3-by-1 kernel for the
gradient calculation and three 5-by-5 kernels for the circular window filter on the three gradient
components.

Padding method — Method for padding
Symmetric (default) | Replicate | None

1 Blocks

1-30

Select one of these methods for padding the boundary of the input image. For more information about
these methods, see “Edge Padding”.

• Symmetric — Set the value of the padding pixels to mirror the edge of the image. This option
prevents edges from being detected at the boundaries of the active frame.

• Replicate — Repeat the value of pixels at the edge of the image.
• None — Exclude padding logic. The block does not set the pixels outside the image frame to any

particular value. This option reduces the hardware resources used by the block and the blanking
required between frames but affects the accuracy of the output pixels at the edges of the frame.
To maintain pixel stream timing, the output frame is the same size as the input frame. However, to
avoid using pixels calculated from undefined padding values, mask off the KernelSize/2 pixels
around the edge of the frame for downstream operations. For details, see “Increase Throughput
with Padding None”.

The circular window filters used in the Harris algorithm pad the edges of the frame using Replicate
padding.

Data Types

Rounding mode — Rounding method for internal fixed-point calculations
Floor (default) | Ceiling | Convergent | Nearest | Round | Zero

Specify a rounding method for internal fixed-point calculations.

Saturate on integer overflow — Overflow action for internal fixed-point calculations
off (default) | on

When you clear this parameter, fixed-point and integer values wrap around to zero when the value
overflows what is representable with that data type. When you select this parameter, the value
saturates at the maximum representable value.

Output Data Type — Data type for corner output port
Inherit same as first input (default) | data type expression | Inherit via internal rule

Specify a data type for the output corner port. By default, the block returns the corner metric using
the same data type as the input pixel port.

Tips
• When you use a block with an internal line buffer inside an Enabled Subsystem, the enable signal

pattern must maintain the timing of the pixel stream, including the minimum blanking intervals. If
the enable pattern corrupts the timing of the pixel stream, you might see partial output frames,
corrupted pixel stream control signals, or mismatches between Simulink and HDL simulation
results. You may need to extend the blanking intervals to accommodate for cycles when the enable
is low. For more information, see “Configure Blanking Intervals”.

Algorithms
When the block implements the FAST algorithm, it uses a single line buffer to extract the kernel
windows. The algorithm subtracts the center pixel of the kernel from each of the circle pixels. For
kernel diagrams, see the “Method” on page 1-0 parameter. Each result is compared to the
minContrast value. When the required number of consecutive pixels exceed the threshold, the center

 Corner Detector

1-31

is marked as a corner, and the block computes the sum-of-absolute-difference (SAD) metric for the
circle. Only those differences that exceed the minimum contrast threshold are included in the metric.
Noncontiguous pixels are also included in the metric. This calculation means that the algorithm
detects a light center pixel surrounded by dark pixels or a dark center pixel surrounded by light
pixels as corners with high metrics. To optimize hardware performance, the algorithm is pipelined
between each of the add or subtract operations.

The Harris algorithm uses five image filters to calculate the two gradients and three circular
windows. The calculation of the approximation of the eigenvalue of the Harris matrix uses three
multipliers and three adders and is pipelined to optimize hardware performance. The diagram shows
the architecture of the Harris algorithm, where A is the Harris matrix.

For additional details of the Harris algorithm, see the “Harris Corner Detection” example.

References
[1] "HIGH-SPEED IMAGE FEATURE DETECTION USING FPGA IMPLEMENTATION OF FAST

ALGORITHM:" Proceedings of the Third International Conference on Computer Vision Theory
and Applications, SciTePress - Science and Technology Publications, 2008, pp. 174–79.
doi:10.5220/0001080801740179.

[2] Rosten, E., and T. Drummond. “Fusing Points and Lines for High Performance Tracking.”
Proceedings of the IEEE International Conference on Computer Vision, vol. 2, 2005, pp.
1508–11.

[3] Rosten, E., and T. Drummond. "Machine Learning for High-Speed Corner Detection." Computer
Vision - ECCV 2006 Lecture Notes in Computer Science, 2006, 430-43.
doi:10.1007/11744023_34.

[4] Harris, C., and M. Stephens. “A Combined Corner and Edge Detector.” In Proceedings of the Alvey
Vision Conference 1988, 23.1-23.6. Manchester: Alvey Vision Club, 1988. DOI.org (Crossref),
doi:10.5244/C.2.23.

1 Blocks

1-32

Extended Capabilities
C/C++ Code Generation
Generate C and C++ code using Simulink® Coder™.

This block supports C/C++ code generation for Simulink accelerator and rapid accelerator modes
and for DPI component generation.

HDL Code Generation
Generate Verilog and VHDL code for FPGA and ASIC designs using HDL Coder™.

HDL Coder provides additional configuration options that affect HDL implementation and synthesized
logic.

HDL Architecture

This block has a single, default HDL architecture.

HDL Block Properties

ConstrainedOutputPi
peline

Number of registers to place at the outputs by moving existing delays
within your design. Distributed pipelining does not redistribute these
registers. The default is 0. For more details, see
“ConstrainedOutputPipeline” (HDL Coder).

InputPipeline Number of input pipeline stages to insert in the generated code.
Distributed pipelining and constrained output pipelining can move these
registers. The default is 0. For more details, see “InputPipeline” (HDL
Coder).

OutputPipeline Number of output pipeline stages to insert in the generated code.
Distributed pipelining and constrained output pipelining can move these
registers. The default is 0. For more details, see “OutputPipeline” (HDL
Coder).

See Also
Blocks
Frame To Pixels

Objects
visionhdl.CornerDetector

Introduced in R2020a

 Corner Detector

1-33

HV Counter
Count active dimensions of pixel stream
Library: Vision HDL Toolbox / Utilities

Description
The HV Counter block analyzes a video stream and returns the current count of lines per frame and
pixels per line. The block also delays control signals of the pixel stream to correspond with the count
result. Use this block for algorithms that use the location of a pixel within a frame or region of
interest.

This waveform shows the pixel-stream control signals and resulting counter outputs for the first two
lines of a video frame that has 10 pixels per line. The HV Counter block has a latency of two cycles to
return the current counter values.

Ports
This block uses a bus for frame control signals associated with each pixel of a pixel stream. This
interface enables the block to operate independently of image size and format. All Vision HDL
Toolbox blocks use the same streaming interface. The block accepts and returns a bus containing five
control signals. The control signals indicate the validity of each pixel and its location in the frame. For
a full description of the interface, see “Streaming Pixel Interface”.

Input

ctrl — Control signals associated with pixel stream
pixelcontrol bus

The pixelcontrol bus contains five signals. The signals describe the validity of the pixel and its
location in the frame. For more information, see “Pixel Control Bus”.
Data Types: bus

1 Blocks

1-34

Output

hCount — Pixel location in line
positive integer

Pixel location within a line, returned as a positive integer. The block clears the pixel count at the start
of each line. If the input pixels per line exceeds the size of the counter, the block returns a saturated
value until the start of the next line.
Data Types: fixdt(0,ceil(log2(ActiveVideoLines)),0)

vCount — Line location in frame
positive integer

Line location within the frame or region of interest, returned as a positive integer. The block clears
the line count at the start of each frame. If the input lines per frame exceeds the size of the counter,
the block returns a saturated value until the start of the next frame.
Data Types: fixdt(0,ceil(log2(ActiveVideoLines)),0)

ctrl — Control signals associated with pixel stream
pixelcontrol bus

The pixelcontrol bus contains five signals. The signals describe the validity of the pixel and its
location in the frame. For more information, see “Pixel Control Bus”.
Data Types: bus

Parameters
Active pixels per line — Maximum pixels per line
320 (default) | positive integer

Maximum pixels per line, specified as a positive integer. The block implements a pixel counter that
has ceil(log2(ActivePixelsPerLine)) bits. For example, for a frame with 320 pixels per line,
the counter has 9 bits. For a frame with 1024 pixels per line, the counter has 11 bits.

Active video lines — Maximum lines per frame
240 (default) | positive integer

Maximum lines per frame, specified as a positive integer. The block implements a line counter that
has ceil(log2(ActiveVideoLines)) bits. For example, for a frame with 240 pixels per line, the
counter has 8 bits. For a frame with 1080 pixels per line, the counter has 11 bits.

Extended Capabilities
C/C++ Code Generation
Generate C and C++ code using Simulink® Coder™.

This block supports C/C++ code generation for Simulink accelerator and rapid accelerator modes
and for DPI component generation.

HDL Code Generation
Generate Verilog and VHDL code for FPGA and ASIC designs using HDL Coder™.

 HV Counter

1-35

HDL Coder provides additional configuration options that affect HDL implementation and synthesized
logic.

HDL Architecture

This block has a single, default HDL architecture.

HDL Block Properties

ConstrainedOutputPi
peline

Number of registers to place at the outputs by moving existing delays
within your design. Distributed pipelining does not redistribute these
registers. The default is 0. For more details, see
“ConstrainedOutputPipeline” (HDL Coder).

InputPipeline Number of input pipeline stages to insert in the generated code.
Distributed pipelining and constrained output pipelining can move these
registers. The default is 0. For more details, see “InputPipeline” (HDL
Coder).

OutputPipeline Number of output pipeline stages to insert in the generated code.
Distributed pipelining and constrained output pipelining can move these
registers. The default is 0. For more details, see “OutputPipeline” (HDL
Coder).

See Also
Blocks
Frame To Pixels

Objects
visionhdl.HVCounter

Introduced in R2019a

1 Blocks

1-36

Demosaic Interpolator
Construct RGB pixel data from Bayer pattern pixels
Library: Vision HDL Toolbox / Conversions

Description
The Demosaic Interpolator block provides a Bayer pattern interpolation filter for streaming video
data. The block implements the calculations using hardware-efficient, multiplier-free algorithms for
HDL code generation. You can select a low-complexity bilinear interpolation, or a moderate-
complexity gradient-corrected bilinear interpolation.

• When you select bilinear interpolation, the block operates on a 3×3 pixel window using only
additions and bit shifts.

• When you select gradient correction, the block operates on a 5×5 pixel window. The calculation is
performed using bit shift, addition, and low-order canonical signed digit (CSD) multiplication.

Ports
This block uses a streaming pixel interface with a pixelcontrol bus for frame control signals. This
interface enables the block to operate independently of image size and format. All Vision HDL
Toolbox blocks use the same streaming interface. The block accepts and returns a scalar pixel value
and a bus that contains five control signals. The control signals indicate the validity of each pixel and
its location in the frame. To convert a frame (pixel matrix) into a serial pixel stream and control
signals, use the Frame To Pixels block. For a full description of the interface, see “Streaming Pixel
Interface”.

Input

pixel — Single image pixel
scalar

Single image pixel, specified as a scalar. Images in the Bayer format have one color component for
each pixel location. Select the sequence of R, G, and B pixels with the Sensor alignment parameter.

double and single data types are supported for simulation, but not for HDL code generation.
Data Types: single | double | int8 | int16 | int32 | uint8 | uint16 | uint32 | fixed point

ctrl — Control signals associated with pixel stream
pixelcontrol bus

The pixelcontrol bus contains five signals. The signals describe the validity of the pixel and its
location in the frame. For more information, see “Pixel Control Bus”.
Data Types: bus

 Demosaic Interpolator

1-37

Output

pixel — Single image pixel
three-element vector of RGB values

Single image pixel, returned as a three-element vector of RGB values. The block calculates the values
of the missing color components for each pixel, using the method you specify in the Interpolation
algorithm parameter.

double and single data types are supported for simulation, but not for HDL code generation.
Data Types: single | double | int8 | int16 | int32 | uint8 | uint16 | uint32 | fixed point

ctrl — Control signals associated with pixel stream
pixelcontrol bus

The pixelcontrol bus contains five signals. The signals describe the validity of the pixel and its
location in the frame. For more information, see “Pixel Control Bus”.
Data Types: bus

Parameters
Interpolation algorithm — Algorithm used to calculate missing pixel values
Gradient-corrected linear (default) | Bilinear

Algorithm used to calculate missing pixel values, specified as one of the following:

• Gradient-corrected linear — Bilinear average, corrected for intensity gradient
• Bilinear — Average of the pixel values in the surrounding 3×3 neighborhood

Sensor alignment — Color sequence of the pixels in the input stream
RGGB (default) | GBRG | GRBG | BGGR

Select the sequence of R, G, and B pixels that correspond to the 2-by-2 block of pixels in the top-left
corner of the input image. Specify the sequence in left-to-right, top-to-bottom order. For instance, the
default sequence of RGGB represents an image with this pattern.

Line buffer size — Size of line memory buffer
2048 (default) | integer

Specify a power of two that accommodates the number of active pixels in a single horizontal line.

Choose a power of two that accommodates the number of active pixels in a horizontal line. If you
specify a value that is not a power of two, the block uses the next largest power of two. The total
memory size allocated depends on your selection of Interpolation algorithm:

• Bilinear: 2-by-Line buffer size memory locations

1 Blocks

1-38

• Gradient-corrected linear: 4-by-Line buffer size memory locations

Tips
• When you use a block with an internal line buffer inside an Enabled Subsystem, the enable signal

pattern must maintain the timing of the pixel stream, including the minimum blanking intervals. If
the enable pattern corrupts the timing of the pixel stream, you might see partial output frames,
corrupted pixel stream control signals, or mismatches between Simulink and HDL simulation
results. You may need to extend the blanking intervals to accommodate for cycles when the enable
is low. For more information, see “Configure Blanking Intervals”.

Algorithms
The block pads the edges of the image with symmetric pixel values. For more details, see “Edge
Padding”.

Interpolation
Bilinear Interpolation

The block interpolates the missing color values by using a 3×3 neighborhood. The average is
calculated over the adjacent two pixels or four pixels, depending on the sensor color pattern. The
block implements this algorithm using only add and shift operations.

Gradient-Corrected Linear Interpolation

Gradient correction improves interpolation performance across edges by taking advantage of the
correlation between the color channels. The block calculates the missing color values using bilinear
interpolation, and then modifies the value corresponding to the intensity gradient calculated over a
5×5 neighborhood. The block applies the gradient correction using a fixed set of filter kernels. The
filter coefficients were designed empirically to perform well over a wide range of image data. To
enable an efficient hardware implementation, the coefficients are multiples of powers of two. For
details of this interpolation algorithm, see [1].

Latency

The block buffers one line of input pixels before starting bilinear interpolation calculations. The
gradient correction calculation starts after the block buffers two lines.

The latency of the block is the line buffer latency plus the latency of the kernel calculation. The line
buffer latency includes edge padding by default. The latency of the padding operation depends on the
size of the kernel. If edge padding is not necessary for your design, you can reduce the latency by
setting the Padding method parameter to None. When you use this option, the block latency does
not depend on your kernel size. To determine the exact latency for any configuration of the block,
measure the number of time steps between the input and output control signals.

 Demosaic Interpolator

1-39

Note When you use edge padding, use a horizontal blanking interval greater than twice the kernel
width. This interval lets the block finish processing one line before it starts processing the next one,
including adding padding pixels before and after the active pixels in the line. Standard streaming
video formats use a horizontal blanking interval of about 25% of the frame width. This interval is
much larger than the filters applied to each frame. When you disable edge padding, the horizontal
blanking interval must be at least 12 cycles and is independent of the kernel size. If you are using a
custom video format, set the horizontal blanking interval by using the Frame To Pixels block
parameters. The horizontal blanking interval is equal to Total pixels per line – Active pixels per
line or, equivalently, Front porch + Back porch. For more information, see “Configure Blanking
Intervals”.

References
[1] Malvar, Henrique S., Li-wei He, and Ross Cutler. “High-Quality Linear Interpolation for

Demosaicing of Bayer-Patterned Color Images.” Microsoft Research, May 2004. http://
research.microsoft.com/pubs/102068/Demosaicing_ICASSP04.pdf.

Extended Capabilities
C/C++ Code Generation
Generate C and C++ code using Simulink® Coder™.

This block supports C/C++ code generation for Simulink accelerator and rapid accelerator modes
and for DPI component generation.

HDL Code Generation
Generate Verilog and VHDL code for FPGA and ASIC designs using HDL Coder™.

HDL Coder provides additional configuration options that affect HDL implementation and synthesized
logic.

HDL Architecture

This block has a single, default HDL architecture.

1 Blocks

1-40

HDL Block Properties

ConstrainedOutputPi
peline

Number of registers to place at the outputs by moving existing delays
within your design. Distributed pipelining does not redistribute these
registers. The default is 0. For more details, see
“ConstrainedOutputPipeline” (HDL Coder).

InputPipeline Number of input pipeline stages to insert in the generated code.
Distributed pipelining and constrained output pipelining can move these
registers. The default is 0. For more details, see “InputPipeline” (HDL
Coder).

OutputPipeline Number of output pipeline stages to insert in the generated code.
Distributed pipelining and constrained output pipelining can move these
registers. The default is 0. For more details, see “OutputPipeline” (HDL
Coder).

Restrictions

You cannot generate HDL for this block inside a Resettable Synchronous Subsystem.

See Also
Blocks
Demosaic | Frame To Pixels

Objects
visionhdl.DemosaicInterpolator

Introduced in R2015a

 Demosaic Interpolator

1-41

Dilation
Morphological dilation of binary pixel data
Library: Vision HDL Toolbox / Morphological Operations

Description
The Dilation block replaces each pixel with the local maximum of the neighborhood around the pixel.
The block operates on a stream of binary intensity values. You can specify a neighborhood or
structuring element of up to 32-by-32 pixels.

This block uses a streaming pixel interface with a bus for frame control signals. This interface
enables the block to operate independently of image size and format. The pixel ports on this block
support single pixel streaming or multipixel streaming. Single pixel streaming accepts and returns a
single pixel value each clock cycle. Multipixel streaming accepts and returns 4 or 8 pixels per clock
cycle to support high-frame-rate or high-resolution formats. Along with the pixel, the block accepts
and returns a pixelcontrol bus that contains five control signals. The control signals indicate the
validity of each pixel and their location in the frame. For multipixel streaming, one set of control
signals applies to all four or eight pixels in the vector. To convert a frame (pixel matrix) into a serial
pixel stream and control signals, use the Frame To Pixels block. For a full description of the interface,
see “Streaming Pixel Interface”.

Ports
Input

pixel — Boolean input pixel or multipixel vector
scalar | vector

This block supports single pixel streaming or multipixel streaming. For single pixel streaming, specify
a single input pixel as a scalar Boolean value. For multipixel streaming, specify a vector of four or
eight Boolean values. For details of how to set up your model for multipixel streaming, see “Filter
Multipixel Video Streams”.
Data Types: Boolean

ctrl — Control signals associated with pixel stream
pixelcontrol bus

The pixelcontrol bus contains five signals. The signals describe the validity of the pixel and its
location in the frame. For more information, see “Pixel Control Bus”.

For multipixel streaming, each vector of pixel values has one set of control signals. Because the
vector has only one valid signal, the pixels in the vector must be either all valid or all invalid. The
hStart and vStart signals apply to the pixel with the lowest index in the vector. The hEnd and
vEnd signals apply to the pixel with the highest index in the vector.

1 Blocks

1-42

Data Types: bus

Output

pixel — Boolean output pixel or multipixel vector
scalar | vector

This block supports single pixel streaming or multipixel streaming. When using single pixel
streaming, the block returns a single pixel as a scalar Boolean value. When using multipixel
streaming, the block returns a vector of Boolean values. This vector is the same size as the input
pixel vector. For details of how to set up your model for multipixel streaming, see “Filter Multipixel
Video Streams”.
Data Types: Boolean

ctrl — Control signals associated with pixel stream
pixelcontrol bus

The pixelcontrol bus contains five signals. The signals describe the validity of the pixel and its
location in the frame. For more information, see “Pixel Control Bus”.

For multipixel streaming, each vector of pixel values has one set of control signals. Because the
vector has only one valid signal, the pixels in the vector must be either all valid or all invalid. The
hStart and vStart signals apply to the pixel with the lowest index in the vector. The hEnd and
vEnd signals apply to the pixel with the highest index in the vector.
Data Types: bus

Parameters
Neighborhood — Pixel neighborhood
ones(3,3) (default) | vector or matrix of 1s and 0s

Pixel neighborhood, specified as a vector or matrix of binary values.

The block supports neighborhoods of up to 32-by-32 pixels. To use a structuring element, specify
Neighborhood as getnhood(strel(shape)).

When you use multipixel vector input, the neighborhood must be at least two pixels in each
dimension.

Line buffer size — Size of line memory buffer
2048 (default) | positive integer

Specify a power of two that accommodates the number of active pixels in a single horizontal line.

If you specify a value that is not a power of two, the block uses the next largest power of two. The
block allocates (neighborhood lines – 1)-by-Line buffer size memory locations to store the pixels.

Padding method — Method for padding
Constant (default) | None

Select one of these methods for padding the boundary of the input image. For more information about
these methods, see “Edge Padding”.

 Dilation

1-43

• Constant — The block pads the image with zeros. This value prevents dilation at the boundaries
of the active frame.

• None — Exclude padding logic. The block does not set the pixels outside the image frame to any
particular value. This option reduces the hardware resources used by the block and the blanking
required between frames but affects the accuracy of the output pixels at the edges of the frame.
To maintain pixel stream timing, the output frame is the same size as the input frame. However, to
avoid using pixels calculated from undefined padding values, mask off the KernelSize/2 pixels
around the edge of the frame for downstream operations. For details, see “Increase Throughput
with Padding None”.

Tips
• When you use a block with an internal line buffer inside an Enabled Subsystem, the enable signal

pattern must maintain the timing of the pixel stream, including the minimum blanking intervals. If
the enable pattern corrupts the timing of the pixel stream, you might see partial output frames,
corrupted pixel stream control signals, or mismatches between Simulink and HDL simulation
results. You may need to extend the blanking intervals to accommodate for cycles when the enable
is low. For more information, see “Configure Blanking Intervals”.

Algorithms
Latency

The latency of the block is the line buffer latency plus the latency of the kernel calculation. The line
buffer latency includes edge padding by default. The latency of the padding operation depends on the
size of the kernel. If edge padding is not necessary for your design, you can reduce the latency by
setting the Padding method parameter to None. When you use this option, the block latency does
not depend on your kernel size. To determine the exact latency for any configuration of the block,
measure the number of time steps between the input and output control signals.

The latency of the kernel depends on the neighborhood size.

Note When you use edge padding, use a horizontal blanking interval greater than twice the kernel
width. This interval lets the block finish processing one line before it starts processing the next one,
including adding padding pixels before and after the active pixels in the line. Standard streaming
video formats use a horizontal blanking interval of about 25% of the frame width. This interval is
much larger than the filters applied to each frame. When you disable edge padding, the horizontal
blanking interval must be at least 12 cycles and is independent of the kernel size. If you are using a
custom video format, set the horizontal blanking interval by using the Frame To Pixels block

1 Blocks

1-44

parameters. The horizontal blanking interval is equal to Total pixels per line – Active pixels per
line or, equivalently, Front porch + Back porch. For more information, see “Configure Blanking
Intervals”.

Extended Capabilities
C/C++ Code Generation
Generate C and C++ code using Simulink® Coder™.

This block supports C/C++ code generation for Simulink accelerator and rapid accelerator modes
and for DPI component generation.

HDL Code Generation
Generate Verilog and VHDL code for FPGA and ASIC designs using HDL Coder™.

HDL Coder provides additional configuration options that affect HDL implementation and synthesized
logic.

HDL Architecture

This block has a single, default HDL architecture.

HDL Block Properties

ConstrainedOutputPi
peline

Number of registers to place at the outputs by moving existing delays
within your design. Distributed pipelining does not redistribute these
registers. The default is 0. For more details, see
“ConstrainedOutputPipeline” (HDL Coder).

InputPipeline Number of input pipeline stages to insert in the generated code.
Distributed pipelining and constrained output pipelining can move these
registers. The default is 0. For more details, see “InputPipeline” (HDL
Coder).

OutputPipeline Number of output pipeline stages to insert in the generated code.
Distributed pipelining and constrained output pipelining can move these
registers. The default is 0. For more details, see “OutputPipeline” (HDL
Coder).

Restrictions

You cannot generate HDL code for this block if it is inside a Resettable Synchronous Subsystem.

See Also
Erosion | Frame To Pixels | visionhdl.Dilation

Topics
“Types of Morphological Operations” (Image Processing Toolbox)
“Structuring Elements” (Image Processing Toolbox)

Introduced in R2015a

 Dilation

1-45

Edge Detector
Find edges of objects in grayscale pixel stream
Library: Vision HDL Toolbox / Analysis & Enhancement

Description
The Edge Detector block finds the edges in a grayscale pixel stream by using the Sobel, Prewitt, or
Roberts method. The block convolves the input pixels with derivative approximation matrices to find
the gradient of pixel magnitude along two orthogonal directions. It then compares the sum of the
squares of the gradients to the square of a configurable threshold to determine if the gradients
represent an edge.

By default, the block returns a binary image as a stream of pixel values. A pixel value of 1 indicates
that the pixel is an edge. You can disable the edge output. You can also enable output of the gradient
values in the two orthogonal directions at each pixel.

Ports
This block uses a streaming pixel interface with a bus for frame control signals. This interface
enables the block to operate independently of image size and format. The pixel, Edge, and gradient
ports on this block support single pixel streaming or multipixel streaming. Single pixel streaming
accepts and returns a single pixel value each clock cycle. Multipixel streaming accepts and returns a
vector of 4 or 8 pixels per clock cycle to support high-frame-rate or high-resolution formats. Along
with the pixel, the block accepts and returns a pixelcontrol bus containing five control signals.
The control signals indicate the validity of each pixel and their location in the frame. For multipixel
streaming, one set of control signals applies to all four or eight pixels in the vector. To convert a
frame (pixel matrix) into a serial pixel stream and control signals, use the Frame To Pixels block. For
a full description of the interface, see “Streaming Pixel Interface”.

Input

pixel — Input pixel or multipixel vector
scalar | vector

This block supports single pixel streaming or multipixel streaming. For single pixel streaming, specify
a single input pixel as a scalar intensity value. For multipixel streaming, specify a vector of four or
eight pixel intensity values. For details of how to set up your model for multipixel streaming, see
“Filter Multipixel Video Streams”.

This block does not support multicomponent streaming. To process multicomponent streams,
replicate the block for each component. The pixelcontrol bus for all components is identical, so
you can connect a single bus to multiple replicated blocks.

double and single data types are supported for simulation, but not for HDL code generation.

1 Blocks

1-46

Data Types: uint8 | uint16 | uint32 | int8 | int16 | int32 | fixed point | Boolean | double |
single

ctrl — Control signals associated with pixel stream
pixelcontrol bus

The pixelcontrol bus contains five signals. The signals describe the validity of the pixel and its
location in the frame. For more information, see “Pixel Control Bus”.

For multipixel streaming, each vector of pixel values has one set of control signals. Because the
vector has only one valid signal, the pixels in the vector must be either all valid or all invalid. The
hStart and vStart signals apply to the pixel with the lowest index in the vector. The hEnd and
vEnd signals apply to the pixel with the highest index in the vector.
Data Types: bus

Th — Threshold value
scalar

Threshold value that defines an edge, specified as a scalar. The block compares the square of this
value to the sum of the squares of the gradients.

double and single data types are supported for simulation, but not for HDL code generation.
Data Types: single | double | int8 | int16 | int32 | uint8 | uint16 | uint32 | fixed point

Output

Edge — Boolean pixel value, indicating whether pixel is an edge
scalar | vector

For single pixel streaming, Edge is a Boolean scalar. For multipixel streaming, Edge is a vector of
NumberOfPixels-by-1 Boolean values. NumberOfPixels can be four or eight. Each pixel value
indicates whether the pixel is an edge.
Data Types: Boolean

Gv,Gh — Vertical and horizontal gradient
scalar | vector

Vertical and horizontal gradient values calculated over the kernel centered at a pixel location.

For single pixel streaming, the block returns Gv and Gh as scalar values. For multipixel streaming,
the block returns Gv and Gh as vectors of NumberOfPixels-by-1 values. NumberOfPixels can be four
or eight.

double and single data types are supported for simulation, but not for HDL code generation.
Dependencies

These ports are visible when you set Method to Sobel or Prewitt.
Data Types: single | double | int8 | int16 | int32 | uint8 | uint16 | uint32 | fixed point

G45,G135 — Orthogonal gradient
scalar | vector

Orthogonal gradient values calculated over the kernel centered at a pixel location.

 Edge Detector

1-47

For single pixel streaming, the block returns G45 and G135 as scalar values. For multipixel
streaming, the block returns G45 and G135 as vectors of NumberOfPixels-by-1 values.
NumberOfPixels can be four or eight.

double and single data types are supported for simulation, but not for HDL code generation.

Dependencies

These ports are visible when you set Method to Roberts.
Data Types: single | double | int8 | int16 | int32 | uint8 | uint16 | uint32 | fixed point

ctrl — Control signals associated with pixel stream
pixelcontrol bus

The pixelcontrol bus contains five signals. The signals describe the validity of the pixel and its
location in the frame. For more information, see “Pixel Control Bus”.

For multipixel streaming, each vector of pixel values has one set of control signals. Because the
vector has only one valid signal, the pixels in the vector must be either all valid or all invalid. The
hStart and vStart signals apply to the pixel with the lowest index in the vector. The hEnd and
vEnd signals apply to the pixel with the highest index in the vector.
Data Types: bus

Parameters
Main

Method — Edge detection algorithm
Sobel (default) | Prewitt | Roberts

When you select Sobel or Prewitt, the block calculates horizontal and vertical gradients, Gv and
Gh. When you select Roberts, the block calculates orthogonal gradients, G45 and G135. For details
of each method, see “Algorithms” on page 1-50.

Note If you select Prewitt, the full-precision internal data type is large due to the 1/6 coefficient.
Consider selecting Output the gradient components, so that you can customize the data type to a
smaller size.

Output the binary image — Enable edge output port
on (default) | off

When this parameter is selected, the block returns a stream of binary pixels representing the edges
detected in the input frame.

You must select at least one of Output the binary image and Output the gradient components.

Output the gradient components — Enable gradient output ports
off (default) | on

When this parameter is selected, the block returns a stream of values representing the gradients
calculated in the two orthogonal directions at each pixel. When you set Method to Sobel or

1 Blocks

1-48

Prewitt, the output ports Gv and Gh appear on the block. When you set Method to Roberts, the
output ports G45 and G135 appear on the block.

You must select at least one of Output the binary image and Output the gradient components.

Source of threshold value — Source for gradient threshold that indicates an edge
Property (default) | Input port

You can set the threshold from an input port or from the dialog box. The default value is Property.
Selecting Input port enables the Th port.

Threshold value — Gradient threshold value that indicates an edge
20 (default) | scalar

The block compares the square of this value to the sum of the squares of the gradients. The block
casts this value to the data type of the gradients.
Dependencies

This option is visible when you set Source of threshold value to Property.

Line buffer size — Size of the line memory buffer
2048 (default) | integer

Specify a power of two that accommodates the number of active pixels in a single horizontal line.

If you specify a value that is not a power of two, the block uses the next largest power of two. The
block allocates (N – 1)-by-Line buffer size memory locations to store the pixels, where N is the
number of lines in the differential approximation matrix. If you set Method to Sobel or Prewitt,
then N is 3. If you set Method to Roberts, then N is 2.

Padding method — Method for padding
Symmetric (default) | None

Select one of these methods for padding the boundary of the input image. For more information about
these methods, see “Edge Padding”.

• Symmetric — Set the value of the padding pixels to mirror the edge of the image. This option
prevents edges from being detected at the boundaries of the active frame.

• None — Exclude padding logic. The block does not set the pixels outside the image frame to any
particular value. This option reduces the hardware resources used by the block and the blanking
required between frames but affects the accuracy of the output pixels at the edges of the frame.
To maintain pixel stream timing, the output frame is the same size as the input frame. However, to
avoid using pixels calculated from undefined padding values, mask off the KernelSize/2 pixels
around the edge of the frame for downstream operations. For details, see “Increase Throughput
with Padding None”.

Data Types

Rounding mode — Rounding method for internal fixed-point calculations
Floor (default) | Ceiling | Convergent | Nearest | Round | Zero

Specify a rounding method for internal fixed-point calculations.

Saturate on integer overflow — Overflow action for internal fixed-point calculations
off (default) | on

 Edge Detector

1-49

When you clear this parameter, fixed-point and integer values wrap around to zero when the value
overflows what is representable with that data type. When you select this parameter, the value
saturates at the maximum representable value.

Gradient Data Type — Data type for gradient output ports
Inherit via internal rule (default) | data type expression

Data type for the two gradient output ports. By default, the block automatically chooses full-precision
data types.
Dependencies

To enable this parameter, on the Main tab, select Output the gradient components.

Tips
• When you use a block with an internal line buffer inside an Enabled Subsystem, the enable signal

pattern must maintain the timing of the pixel stream, including the minimum blanking intervals. If
the enable pattern corrupts the timing of the pixel stream, you might see partial output frames,
corrupted pixel stream control signals, or mismatches between Simulink and HDL simulation
results. You may need to extend the blanking intervals to accommodate for cycles when the enable
is low. For more information, see “Configure Blanking Intervals”.

Algorithms
The Edge Detector block provides three methods for detecting edges in an input image. The methods
use different derivative approximation matrices to find two orthogonal gradients. The Sobel and
Prewitt methods calculate the gradient in horizontal and vertical directions. The Roberts method
calculates the gradients at 45 degrees and 135 degrees. The block uses the same matrices as the
Edge Detection block in Computer Vision Toolbox.

When you use multipixel streaming, the block uses a single line memory and implements
NumberOfPixels filters in parallel. This increase in hardware resources is a trade off for increasing
throughput compared to single-pixel streaming.

Method Direction 1 Direction 2
Sobel

1
8

1 0 −1
2 0 −2
1 0 −1

1
8

1 2 1
0 0 0
−1 −2 −1

Prewitt
1
6

1 0 −1
1 0 −1
1 0 −1

1
6

1 1 1
0 0 0
−1 −1 −1

Roberts 1
2

1 0
0 −1

1
2

0 1
−1 0

Note The Prewitt coefficients require extra bits of precision because they are not powers of two. The
block uses 16 bits to represent the Prewitt coefficients. For 8-bit input, the default size of the full-
precision gradients is 27 bits. When using the Prewitt method, a good practice is to reduce the word
length used for the gradient calculation. Select the Output the gradient components check box,
and then on the Data Types tab, specify a smaller word length using Gradient Data Type.

1 Blocks

1-50

The block convolves the neighborhood of the input pixel with the derivative matrices, D1 and D2. It
then compares the sum of the squares of the gradients to the square of the threshold. Computing the
square of the threshold avoids constructing a square root circuit. The block casts the gradients to the
type you specified on the Data Types tab. The type conversion on the square of the threshold
matches the type of the sum of the squares of the gradients.

Latency

The latency of the block is the line buffer latency plus the latency of the kernel calculation. The line
buffer latency includes edge padding by default. The latency of the padding operation depends on the
size of the kernel. If edge padding is not necessary for your design, you can reduce the latency by
setting the Padding method parameter to None. When you use this option, the block latency does
not depend on your kernel size. To determine the exact latency for any configuration of the block,
measure the number of time steps between the input and output control signals.

Note When you use edge padding, use a horizontal blanking interval greater than twice the kernel
width. This interval lets the block finish processing one line before it starts processing the next one,

 Edge Detector

1-51

including adding padding pixels before and after the active pixels in the line. Standard streaming
video formats use a horizontal blanking interval of about 25% of the frame width. This interval is
much larger than the filters applied to each frame. When you disable edge padding, the horizontal
blanking interval must be at least 12 cycles and is independent of the kernel size. If you are using a
custom video format, set the horizontal blanking interval by using the Frame To Pixels block
parameters. The horizontal blanking interval is equal to Total pixels per line – Active pixels per
line or, equivalently, Front porch + Back porch. For more information, see “Configure Blanking
Intervals”.

Extended Capabilities
C/C++ Code Generation
Generate C and C++ code using Simulink® Coder™.

This block supports C/C++ code generation for Simulink accelerator and rapid accelerator modes
and for DPI component generation.

HDL Code Generation
Generate Verilog and VHDL code for FPGA and ASIC designs using HDL Coder™.

HDL Coder provides additional configuration options that affect HDL implementation and synthesized
logic.
HDL Architecture

This block has a single, default HDL architecture.
HDL Block Properties

ConstrainedOutputPi
peline

Number of registers to place at the outputs by moving existing delays
within your design. Distributed pipelining does not redistribute these
registers. The default is 0. For more details, see
“ConstrainedOutputPipeline” (HDL Coder).

InputPipeline Number of input pipeline stages to insert in the generated code.
Distributed pipelining and constrained output pipelining can move these
registers. The default is 0. For more details, see “InputPipeline” (HDL
Coder).

OutputPipeline Number of output pipeline stages to insert in the generated code.
Distributed pipelining and constrained output pipelining can move these
registers. The default is 0. For more details, see “OutputPipeline” (HDL
Coder).

Restrictions

You cannot generate HDL for this block inside a Resettable Synchronous Subsystem.

See Also
Blocks
Edge Detection | Frame To Pixels

Objects
visionhdl.EdgeDetector

1 Blocks

1-52

Introduced in R2015a

 Edge Detector

1-53

Erosion
Morphological erosion of binary pixel data
Library: Vision HDL Toolbox / Morphological Operations

Description
The Erosion block replaces each pixel with the local minimum of the neighborhood around the pixel.
The block operates on a stream of binary intensity values. You can specify a neighborhood or
structuring element of up to 32-by-32 pixels.

This block uses a streaming pixel interface with a bus for frame control signals. This interface
enables the block to operate independently of image size and format. The pixel ports on this block
support single pixel streaming or multipixel streaming. Single pixel streaming accepts and returns a
single pixel value each clock cycle. Multipixel streaming accepts and returns 4 or 8 pixels per clock
cycle to support high-frame-rate or high-resolution formats. Along with the pixel, the block accepts
and returns a pixelcontrol bus that contains five control signals. The control signals indicate the
validity of each pixel and their location in the frame. For multipixel streaming, one set of control
signals applies to all four or eight pixels in the vector. To convert a frame (pixel matrix) into a serial
pixel stream and control signals, use the Frame To Pixels block. For a full description of the interface,
see “Streaming Pixel Interface”.

Ports
Input

pixel — Boolean input pixel or multipixel vector
scalar | vector

This block supports single pixel streaming or multipixel streaming. For single pixel streaming, specify
a single input pixel as a scalar Boolean value. For multipixel streaming, specify a vector of four or
eight Boolean values. For details of how to set up your model for multipixel streaming, see “Filter
Multipixel Video Streams”.
Data Types: Boolean

ctrl — Control signals associated with pixel stream
pixelcontrol bus

The pixelcontrol bus contains five signals. The signals describe the validity of the pixel and its
location in the frame. For more information, see “Pixel Control Bus”.

For multipixel streaming, each vector of pixel values has one set of control signals. Because the
vector has only one valid signal, the pixels in the vector must be either all valid or all invalid. The
hStart and vStart signals apply to the pixel with the lowest index in the vector. The hEnd and
vEnd signals apply to the pixel with the highest index in the vector.

1 Blocks

1-54

Data Types: bus

Output

pixel — Boolean output pixel or multipixel vector
scalar | vector

This block supports single pixel streaming or multipixel streaming. When using single pixel
streaming, the block returns a single pixel as a scalar Boolean value. When using multipixel
streaming, the block returns a vector of Boolean values. This vector is the same size as the input
pixel vector. For details of how to set up your model for multipixel streaming, see “Filter Multipixel
Video Streams”.
Data Types: Boolean

ctrl — Control signals associated with pixel stream
pixelcontrol bus

The pixelcontrol bus contains five signals. The signals describe the validity of the pixel and its
location in the frame. For more information, see “Pixel Control Bus”.

For multipixel streaming, each vector of pixel values has one set of control signals. Because the
vector has only one valid signal, the pixels in the vector must be either all valid or all invalid. The
hStart and vStart signals apply to the pixel with the lowest index in the vector. The hEnd and
vEnd signals apply to the pixel with the highest index in the vector.
Data Types: bus

Parameters
Neighborhood — Pixel neighborhood
ones(3,3) (default) | vector or matrix of 1s and 0s

Pixel neighborhood, specified as a vector or matrix of binary values.

The block supports neighborhoods of up to 32-by-32 pixels. To use a structuring element, specify
Neighborhood as getnhood(strel(shape)).

When you use multipixel vector input, the neighborhood must be at least two pixels in each
dimension.

Line buffer size — Size of line memory buffer
2048 (default) | positive integer

Specify a power of two that accommodates the number of active pixels in a single horizontal line.

If you specify a value that is not a power of two, the block uses the next largest power of two. The
block allocates (neighborhood lines – 1)-by-Line buffer size memory locations to store the pixels.

Padding method — Method for padding
Constant (default) | None

Select one of these methods for padding the boundary of the input image. For more information about
these methods, see “Edge Padding”.

 Erosion

1-55

• Constant — The block pads the image with ones. This value prevents erosion at the boundaries
of the active frame.

• None — Exclude padding logic. The block does not set the pixels outside the image frame to any
particular value. This option reduces the hardware resources used by the block and the blanking
required between frames but affects the accuracy of the output pixels at the edges of the frame.
To maintain pixel stream timing, the output frame is the same size as the input frame. However, to
avoid using pixels calculated from undefined padding values, mask off the KernelSize/2 pixels
around the edge of the frame for downstream operations. For details, see “Increase Throughput
with Padding None”.

Tips
• When you use a block with an internal line buffer inside an Enabled Subsystem, the enable signal

pattern must maintain the timing of the pixel stream, including the minimum blanking intervals. If
the enable pattern corrupts the timing of the pixel stream, you might see partial output frames,
corrupted pixel stream control signals, or mismatches between Simulink and HDL simulation
results. You may need to extend the blanking intervals to accommodate for cycles when the enable
is low. For more information, see “Configure Blanking Intervals”.

Algorithms
Latency

The latency of the block is the line buffer latency plus the latency of the kernel calculation. The line
buffer latency includes edge padding by default. The latency of the padding operation depends on the
size of the kernel. If edge padding is not necessary for your design, you can reduce the latency by
setting the Padding method parameter to None. When you use this option, the block latency does
not depend on your kernel size. To determine the exact latency for any configuration of the block,
measure the number of time steps between the input and output control signals.

The latency of the kernel depends on the neighborhood size.

Note When you use edge padding, use a horizontal blanking interval greater than twice the kernel
width. This interval lets the block finish processing one line before it starts processing the next one,
including adding padding pixels before and after the active pixels in the line. Standard streaming
video formats use a horizontal blanking interval of about 25% of the frame width. This interval is
much larger than the filters applied to each frame. When you disable edge padding, the horizontal
blanking interval must be at least 12 cycles and is independent of the kernel size. If you are using a
custom video format, set the horizontal blanking interval by using the Frame To Pixels block

1 Blocks

1-56

parameters. The horizontal blanking interval is equal to Total pixels per line – Active pixels per
line or, equivalently, Front porch + Back porch. For more information, see “Configure Blanking
Intervals”.

Extended Capabilities
C/C++ Code Generation
Generate C and C++ code using Simulink® Coder™.

This block supports C/C++ code generation for Simulink accelerator and rapid accelerator modes
and for DPI component generation.

HDL Code Generation
Generate Verilog and VHDL code for FPGA and ASIC designs using HDL Coder™.

HDL Coder provides additional configuration options that affect HDL implementation and synthesized
logic.

HDL Architecture

This block has a single, default HDL architecture.

HDL Block Properties

ConstrainedOutputPi
peline

Number of registers to place at the outputs by moving existing delays
within your design. Distributed pipelining does not redistribute these
registers. The default is 0. For more details, see
“ConstrainedOutputPipeline” (HDL Coder).

InputPipeline Number of input pipeline stages to insert in the generated code.
Distributed pipelining and constrained output pipelining can move these
registers. The default is 0. For more details, see “InputPipeline” (HDL
Coder).

OutputPipeline Number of output pipeline stages to insert in the generated code.
Distributed pipelining and constrained output pipelining can move these
registers. The default is 0. For more details, see “OutputPipeline” (HDL
Coder).

Restrictions

You cannot generate HDL code for this block if it is inside a Resettable Synchronous Subsystem.

See Also
Dilation | Frame To Pixels | visionhdl.Erosion

Topics
“Types of Morphological Operations” (Image Processing Toolbox)
“Structuring Elements” (Image Processing Toolbox)

Introduced in R2015a

 Erosion

1-57

FIL Frame To Pixels
Convert frame-based video to pixel stream for FPGA-in-the-loop
Library: Vision HDL Toolbox / I/O Interfaces

Description
The FIL Frame To Pixels block performs the same frame-to-pixel conversion as the Frame To Pixels
block. In addition, you can configure the width of the output vector to be a single pixel, a line, or an
entire frame. The block returns control signals in vectors of the same width as the pixel data. This
optimization makes more efficient use of the communication link between the FPGA board and your
Simulink simulation when using FPGA-in-the-loop (FIL). To run FPGA-in-the-loop, you must have an
HDL Verifier™ license.

When you generate a programming file for a FIL target in Simulink, the tool creates a model to
compare the FIL simulation with your Simulink design. For Vision HDL Toolbox designs, the FIL block
in that model replicates the pixel-streaming interface to send one pixel at a time to the FPGA. You can
modify the autogenerated model to use the FIL Frame To Pixels and FIL Pixels To Frame blocks to
improve communication bandwidth with the FPGA board by sending one frame at a time. For how to
modify the autogenerated model, see “FPGA-in-the-Loop”.

Specify the same video format and vector size for the FIL Frames To Pixels block and the FIL Pixels
To Frame block.

Ports
Input

frame — Full image frame
matrix

Full image specified as a (Active pixels per line)-by-(Active video lines)-by-N matrix. Height and
width are the dimensions of the active image specified in Video format. N is the Number of
components used to express a single pixel.
Data Types: single | double | int | uint | Boolean | fixed point

Output

data1,...,dataN — Image pixels
vector | matrix

1 Blocks

1-58

Image pixels, returned as a matrix of M-by-Number of pixels values, where M is the width of the
Output vector format. There are N data ports, where N is the Number of components. The data
type is the same as the data type of frame.

When you use multipixel streaming, the FIL DUT has Number of pixels data ports. You must split
the output matrix into Number of pixels row vectors of length M for the FIL DUT input ports. For
details, see “FPGA-in-the-Loop Simulation with Multipixel Streaming”.

Similarly, when you use multicomponent-multipixel streaming, the FIL DUT has Number of
pixels×Number of components data ports. Split the output matrix for each component into
Number of pixels row vectors of length M for the FIL DUT input ports.
Data Types: single | double | int | uint | Boolean | fixed point

hStartOut — First pixel in horizontal line of frame
vector

First pixel in a horizontal line of a frame, returned as a Boolean vector of M values.

For multipixel streaming, hStartOut applies to the pixel with the lowest index in the corresponding
column.
Data Types: Boolean

hEndOut — Last pixel in horizontal line of frame
vector

Last pixel in a horizontal line of a frame, returned as a Boolean vector of M values.

For multipixel streaming, hEndOut applies to the pixel with the highest index in the corresponding
column.
Data Types: Boolean

vStartOut — First pixel in first (top) line of frame
vector

First pixel in the first (top) line of a frame, returned as a Boolean vector of M values.

For multipixel streaming, vStartOut applies to the pixel with the lowest index in the corresponding
column.
Data Types: Boolean

vEndOut — Last pixel in last (bottom) line of frame
vector

Last pixel in the last (bottom) line of a frame, returned as a Boolean vector of M values.

For multipixel streaming, vEndOut applies to the pixel with the highest index in the corresponding
column.
Data Types: Boolean

validOut — Valid pixel indicator
vector

Valid pixel indicator, returned as a Boolean vector of M values.

 FIL Frame To Pixels

1-59

For multipixel streaming, the pixels in the corresponding column are either all valid or all invalid.
Data Types: Boolean

Parameters
Number of components — Number of values used to represent each pixel
1 (default) | 3 | 4

Number of values used to represent each pixel. Each pixel can have 1, 3, or 4 components. Set this
parameter to 1 for grayscale video. Set this parameter to 3 for color video, for example, {R,G,B} or
{Y,Cb,Cr}. Set this parameter to 4 to use color with an alpha channel for transparency.

To process multicomponent streams for blocks that do not support multicomponent input, replicate
the block for each component. The pixelcontrol bus for all components is identical, so you can
connect the ctrl output of the Frame To Pixels block to each replicated block.

Number of pixels — Number of pixels in each column of output matrix
1 (default) | 4 | 8

Number of pixels in each column of the output matrix, specified as 1, 4, or 8.

Each data port returns a M-by-Number of pixels matrix. You must split this matrix into Number of
pixels row vectors of length M for input to the FIL DUT. For details, see “FPGA-in-the-Loop
Simulation with Multipixel Streaming”.

Output vector format — Size of vector used to communicate with FPGA subsystem
Frame (default) | Line | Pixel

Size of the vector used to communicate with the FPGA subsystem. The block returns input pixels and
control signals in vectors of the same length. The block calculates the length of the vectors based on
the Video format parameter.

• Pixel — Return scalar values for pixel and control signals.
• Line — Return (Total pixels per line)-by-1 vectors.
• Frame — Return (Total pixels per line × Total video lines)-by-1 vectors.

A larger value results in faster communication between the FPGA board and Simulink. Choose the
largest option that the I/O and memory resources on your board can support.

For multipixel streaming, specify one of these options for output size.

• Pixel — Return a 1-by-(Number of pixels) vector of pixel values, and scalar control signals that
apply to all the pixels in each vector.

• Line — Return a (Total pixels per line/Number of pixels)-by-Number of pixels matrix of pixel
values, and a vector of control signals of length (Total pixels per line)/(Number of pixels).

• Frame — Return a (Total pixels per line × Total video lines/Number of pixels)-by Number of
pixels matrix of pixel values and a vector of control signals of length (Total pixels per line ×
Total video lines)/Number of pixels.

Dependencies

When Number of pixels and Number of components are both greater than 1, you must set
Output vector format to Frame.

1 Blocks

1-60

Video format — Dimensions of active and inactive regions in video frame
1080p (default) | 240p | 480p | 480pH | 576p | 720p | 768p | 1024p | 1200p | 2KCinema | 4KUHDTV |
8KUHDTV | Custom

Dimensions of active and inactive regions in a video frame. To select a predefined format, select from
the Video format list. The actual frame dimensions are displayed in the Video Format Parameters
section. For a custom format, select Custom, and then specify the dimensions as integers.

The dimensions are defined in the diagram.

Note The sample time of your video source must match the total number of pixels in the frame of
your Frame To Pixels block. The total number of pixels is Total pixels per line × Total video lines, so
set the sample time to this value.

Video
Format

Active
Pixels Per
Line

Active
Video
Lines

Total
Pixels
Per Line

Total
Video
Lines

Starting
Active
Line

Ending
Active
Line

Front
Porch

Back
Porch

240p 320 240 402 324 1 240 44 38
480p 640 480 800 525 36 515 16 144
480pH 720 480 858 525 33 512 16 122
576p 720 576 864 625 47 622 12 132
720p 1280 720 1650 750 25 744 110 260
768p 1024 768 1344 806 10 777 24 296
1024p 1280 1024 1688 1066 42 1065 48 360

 FIL Frame To Pixels

1-61

Video
Format

Active
Pixels Per
Line

Active
Video
Lines

Total
Pixels
Per Line

Total
Video
Lines

Starting
Active
Line

Ending
Active
Line

Front
Porch

Back
Porch

1080p
(default)

1920 1080 2200 1125 42 1121 88 192

1200p 1600 1200 2160 1250 50 1249 64 496
2KCinem
a

2048 1080 2750 1125 42 1121 639 63

4KUHDTV 3840 2160 4400 2250 42 2201 88 472
8KUHDTV 7680 4320 8800 4500 42 4361 88 1032
Custom User-

defined
User-
defined

User-
defined

User-
defined

User-
defined

User-
defined

User-
defined

User-
defined

When using a custom format, the values you enter for the active and inactive dimensions of the image
must add up to the total frame dimensions. If you specify a format that does not conform to these
rules, the block reports an error.

• For the horizontal direction, Total pixels per line must be greater than or equal to Front porch
+ Active pixels per line. The block calculates Back porch = Total pixels per line − Front
porch − Active pixels per line.

• For the vertical direction, Total video lines must be greater than or equal to Starting active
line + Active video lines − 1. The block calculates Ending active line = Starting active line +
Active video lines − 1.

When using the Line Memory block, or blocks that use an internal line memory, with a custom video
format, further requirements apply:

• Active pixels per line must be greater than 1.
• The horizontal blanking interval, or Back porch + Front porch, must meet these guidelines:

• The total of Back porch + Front porch must be at least 2 times the largest kernel size of the
algorithm in the blocks following the Frame To Pixel block. If the kernel size is less than 4, the
total porch must be at least 8 pixels.

• The Back porch must be at least 6 pixels. This parameter is the number of inactive pixels
before the first valid pixel in a frame.

For more information on blanking intervals, see “Configure Blanking Intervals”.

When using multipixel streaming (Number of pixels > 1) these requirements apply.

• The video format must have horizontal dimensions divisible by the Number of pixels parameter
value. The horizontal dimensions are set by these parameters: Active pixels per line, Total
pixels per line, Front porch, and Back porch. Standard video protocols 480p, 720p, 1080p, and
4k UHD support Number of pixels equal to 4 or 8.

• The minimum input frame size for multipixel streaming (either 4 or 8 pixels) is 18 rows-by-32
columns.

• Choose your kernel size and Active pixels per line such that (Active pixels per line)/(Number
of pixels) is at least the kernel width.

1 Blocks

1-62

Extended Capabilities
C/C++ Code Generation
Generate C and C++ code using Simulink® Coder™.

This block supports C/C++ code generation for Simulink Accelerator and Rapid Accelerator modes.

See Also
Blocks
FIL Pixels To Frame | Frame To Pixels

Topics
“Streaming Pixel Interface”
“FPGA Verification” (HDL Verifier)

Introduced in R2015a

 FIL Frame To Pixels

1-63

FIL Pixels To Frame
Convert pixel stream from FPGA-in-the-loop to frame-based video
Library: Vision HDL Toolbox / I/O Interfaces

Description
The FIL Pixels To Frame block performs the same pixel-to-frame conversion as the Pixels To Frame
block. In addition, you can configure the width of the input to be a single pixel, a line, or an entire
frame per step. The block expects control signal input vectors of the same width as the pixel data.
This optimization can speed up the communication link between the FPGA board and your Simulink
simulation when using FPGA-in-the-loop. To run FPGA-in-the-loop, you must have an HDL Verifier
license.

When you generate a programming file for a FIL target in Simulink, the tool creates a model to
compare the FIL simulation with your Simulink design. For Vision HDL Toolbox designs, the FIL block
in that model replicates the pixel-streaming interface to send one pixel at a time to the FPGA. You can
modify the autogenerated model to use the FIL Frame To Pixels and FIL Pixels To Frame blocks to
improve communication bandwidth with the FPGA board by sending one frame at a time. For how to
modify the autogenerated model, see “FPGA-in-the-Loop”.

Specify the same video format for the FIL Frames To Pixels block and the FIL Pixels To Frame block.

Ports
Input

data1,...,dataN — Image pixels
vector | matrix

Image pixels, specified as a matrix of M-by-Number of pixels values, where M is the width of the
Output vector format. There are N data ports, where N is the Number of components.

When you use multipixel streaming, the FIL DUT has Number of pixels data ports. You must
recombine the output vectors from each port into a M-by-Number of pixels matrix. For details, see
“FPGA-in-the-Loop Simulation with Multipixel Streaming”.

Similarly, when you use multicomponent-multipixel streaming, the FIL DUT has Number of
pixels×Number of components data ports. Recombine the output vectors into a M-by-Number of
pixels matrix for each component.

1 Blocks

1-64

Data Types: single | double | int | uint | Boolean | fixed point

hStartIn — First pixel in horizontal line of frame
vector

First pixel in a horizontal line of a frame, specified as a Boolean vector of M values.

For multipixel streaming, hStartIn applies to the pixel with the lowest index in the corresponding
column.
Data Types: Boolean

hEndIn — Last pixel in horizontal line of frame
vector

Last pixel in a horizontal line of a frame, specified as a Boolean vector of M values.

For multipixel streaming, hEndIn applies to the pixel with the highest index in the corresponding
column.
Data Types: Boolean

vStartIn — First pixel in first (top) line of frame
vector

First pixel in the first (top) line of a frame, specified as a Boolean vector of M values.

For multipixel streaming, vStartIn applies to the pixel with the lowest index in the corresponding
column.
Data Types: Boolean

vEndIn — Last pixel in last (bottom) line of frame
vector

Last pixel in the last (bottom) line of a frame, specified as a Boolean vector of M values.

For multipixel streaming, hEndIn applies to the pixel with the highest index in the corresponding
column.
Data Types: Boolean

validIn — Valid pixel indicator
vector

Valid pixel indicator, specified as a Boolean vector of M values.

For multipixel streaming, the pixels in the corresponding column are either all valid or all invalid.
Data Types: Boolean

Output

frame — Full image frame
matrix

 FIL Pixels To Frame

1-65

Full image specified as a (Active pixels per line)-by-(Active video lines)-by-N matrix. Height and
width are the dimensions of the active image specified in Video format. N is the Number of
components used to express a single pixel. The data type is the same as data1,...,dataN.

validOut — Indicates when output frame is ready
scalar

A true (1) value indicates when output frame is successfully recompiled from the input stream.
Data Types: Boolean

Parameters
Number of components — Number of values used to represent each pixel
1 (default) | 3 | 4

Number of values used to represent each pixel. Each pixel can have 1, 3, or 4 components. Set this
parameter to 1 for grayscale video. Set this parameter to 3 for color video, for example, {R,G,B} or
{Y,Cb,Cr}. Set this parameter to 4 to use color with an alpha channel for transparency.

To process multicomponent streams for blocks that do not support multicomponent input, replicate
the block for each component. The pixelcontrol bus for all components is identical, so you can
connect the ctrl output of the Frame To Pixels block to each replicated block.

Number of pixels — Number of pixels in each column of input matrix
1 (default) | 4 | 8

Number of pixels in each column of the input matrix, specified as 1, 4, or 8.

Each data port expects a M-by-Number of pixels matrix. You must recombine the FIL DUT output
vectors to create this matrix. For details, see “FPGA-in-the-Loop Simulation with Multipixel
Streaming”.

Input vector format — Size of the vector used to communicate with the FPGA subsystem
Frame (default) | Line | Pixel

Size of the vector used to communicate with the FPGA subsystem. The block accepts input pixels and
control signals in vectors of the same length. The block calculates the length of the vectors based on
the Video format parameter.

• Pixel — Accept scalar values for pixel and control signals.
• Line — Accept input vectors containing Total pixels per line values.
• Frame — Accept input vectors containing Total pixels per line × Total video lines values.

A larger value results in faster communication between the FPGA board and Simulink. Choose the
largest option that the I/O and memory resources on your board can support.

For multipixel streaming, specify one of these options for input size.

• Pixel — Accept a 1-by-(Number of pixels) vector of pixel values, and scalar control signals that
apply to all the pixels in each vector.

• Line — Accept a (Total pixels per line/Number of pixels)-by-Number of pixels matrix of pixel
values, and a vector of control signals of length (Total pixels per line)/(Number of pixels).

1 Blocks

1-66

• Frame — Return a (Total pixels per line × Total video lines/Number of pixels)-by Number of
pixels matrix of pixel values and a vector of control signals of length (Total pixels per line ×
Total video lines)/Number of pixels.

Dependencies

When Number of pixels and Number of components are both greater than 1, you must set Input
vector format to Frame.

Video format — Dimensions of active regions of a video frame
1080p (default) | 240p | 480p | 480pH | 576p | 720p | 768p | 1024p | 1200p | 2KCinema | 4KUHDTV |
8KUHDTV | Custom

Dimensions of active regions of a video frame. To select a predefined format, use the Video format
list. For a custom format, select Custom, and then specify the active frame dimensions as integers.

Video Format Active Pixels Per
Line

Active Video Lines

240p 320 240
480p 640 480
480pH 720 480
576p 720 576
720p 1280 720
768p 1024 768
1024p 1280 1024
1080p (default) 1920 1080
1200p 1600 1200
2KCinema 2048 1080
4KUHDTV 3840 2160
8KUHDTV 7680 4320
Custom User-

defined
User-
defined

Extended Capabilities
C/C++ Code Generation
Generate C and C++ code using Simulink® Coder™.

This block supports C/C++ code generation for Simulink Accelerator and Rapid Accelerator modes.

See Also
Blocks
FIL Frame To Pixels | Pixels To Frame

Topics
“Streaming Pixel Interface”
“FPGA Verification” (HDL Verifier)

 FIL Pixels To Frame

1-67

Introduced in R2015a

1 Blocks

1-68

Frame To Pixels
Convert frame-based video to pixel stream
Library: Vision HDL Toolbox / I/O Interfaces

Description
The Frame To Pixels block converts color or grayscale video frames to a pixel stream and control
signals. The control signals indicate the validity of each pixel and its location in the frame. The pixel
stream format can include padding pixels around the active frame. You can configure the frame and
padding dimensions by selecting a common video format or by specifying custom dimensions. The
pixel stream can support scalar streaming or multipixel streaming. Multipixel streaming provides 4 or
8 pixels per clock cycle to support high-rate or high-resolution formats. For details of the pixel stream
format, see “Streaming Pixel Interface”.

This block does not support HDL code generation. However, you can use this block to generate input
for a separate subsystem targeted for HDL code generation.

If your model converts frames to a pixel stream and later converts the stream back to frames, specify
the same video format for the Frame To Pixels block and the Pixels To Frame block.

Ports
Input

frame — Full image frame
array

Full image frame, specified as an Active pixels per line-by-Active video lines-by-N array. The first
two array dimensions are the height and width of the active image specified by the Video format
parameter. N is the Number of components used to express a single pixel.
Data Types: single | double | int | uint | Boolean | fixed point

Output

pixel — Image pixel or pixels
scalar | vector

For scalar pixel streams, pixel is a single image pixel returned as a scalar or a vector of 1-by-
Number of components values. For multipixel streams, pixel is a matrix of Number of pixels-by-
Number of components pixel intensity values.

The output data type is the same as the data type of the frame port.

ctrl — Control signals associated with pixel stream
pixelcontrol bus

 Frame To Pixels

1-69

The pixelcontrol bus contains five signals. The signals describe the validity of the pixel and its
location in the frame. For more information, see “Pixel Control Bus”.

For multipixel streaming, each vector of pixel values has one set of control signals. Because the
vector has only one valid signal, the pixels in the vector must be either all valid or all invalid. The
hStart and vStart signals apply to the pixel with the lowest index in the vector. The hEnd and
vEnd signals apply to the pixel with the highest index in the vector.
Data Types: bus

Parameters
Number of components — Number of values used to represent each pixel
1 (default) | 3 | 4

Number of values used to represent each pixel. Each pixel can have 1, 3, or 4 components. Set this
parameter to 1 for grayscale video. Set this parameter to 3 for color video, for example, {R,G,B} or
{Y,Cb,Cr}. Set this parameter to 4 to use color with an alpha channel for transparency.

To process multicomponent streams for blocks that do not support multicomponent input, replicate
the block for each component. The pixelcontrol bus for all components is identical, so you can
connect the ctrl output of the Frame To Pixels block to each replicated block.

Number of pixels — Number of pixels streamed per time step
1 (default) | 4 | 8

Number of pixels transferred on the streaming interface for each time step, specified as 1, 4, or 8. To
enable multipixel streaming and increase throughput for high-resolution or high-frame-rate video, set
this parameter to 4 or 8. Multipixel streaming processes more pixels with the same clock frequency
as a single-pixel streaming interface.

Video Resolution Clock Frequency Required for
Single-Pixel Streaming at 60
fps

Clock Frequency Required for
Multipixel Streaming at 60
fps (4 pixels)

1080p 150 MHz 37.5 MHz
4k UHD 600 MHz 150 MHz
8k UHD 1200 MHz 300 MHz

Video format — Dimensions of active and inactive regions in video frame
1080p (default) | 240p | 480p | 480pH | 576p | 720p | 768p | 1024p | 1200p | 2KCinema | 4KUHDTV |
8KUHDTV | Custom

Dimensions of active and inactive regions in a video frame. To select a predefined format, select from
the Video format list. The actual frame dimensions are displayed in the Video Format Parameters
section. For a custom format, select Custom, and then specify the dimensions as integers.

The dimensions are defined in the diagram.

1 Blocks

1-70

Note The sample time of your video source must match the total number of pixels in the frame of
your Frame To Pixels block. The total number of pixels is Total pixels per line × Total video lines, so
set the sample time to this value.

Video
Format

Active
Pixels Per
Line

Active
Video
Lines

Total
Pixels
Per Line

Total
Video
Lines

Starting
Active
Line

Ending
Active
Line

Front
Porch

Back
Porch

240p 320 240 402 324 1 240 44 38
480p 640 480 800 525 36 515 16 144
480pH 720 480 858 525 33 512 16 122
576p 720 576 864 625 47 622 12 132
720p 1280 720 1650 750 25 744 110 260
768p 1024 768 1344 806 10 777 24 296
1024p 1280 1024 1688 1066 42 1065 48 360
1080p
(default)

1920 1080 2200 1125 42 1121 88 192

1200p 1600 1200 2160 1250 50 1249 64 496
2KCinem
a

2048 1080 2750 1125 42 1121 639 63

4KUHDTV 3840 2160 4400 2250 42 2201 88 472
8KUHDTV 7680 4320 8800 4500 42 4361 88 1032

 Frame To Pixels

1-71

Video
Format

Active
Pixels Per
Line

Active
Video
Lines

Total
Pixels
Per Line

Total
Video
Lines

Starting
Active
Line

Ending
Active
Line

Front
Porch

Back
Porch

Custom User-
defined

User-
defined

User-
defined

User-
defined

User-
defined

User-
defined

User-
defined

User-
defined

When using a custom format, the values you enter for the active and inactive dimensions of the image
must add up to the total frame dimensions. If you specify a format that does not conform to these
rules, the block reports an error.

• For the horizontal direction, Total pixels per line must be greater than or equal to Front porch
+ Active pixels per line. The block calculates Back porch = Total pixels per line − Front
porch − Active pixels per line.

• For the vertical direction, Total video lines must be greater than or equal to Starting active
line + Active video lines − 1. The block calculates Ending active line = Starting active line +
Active video lines − 1.

When using the Line Memory block, or blocks that use an internal line memory, with a custom video
format, further requirements apply:

• Active pixels per line must be greater than 1.
• The horizontal blanking interval, or Back porch + Front porch, must meet these guidelines:

• The total of Back porch + Front porch must be at least 2 times the largest kernel size of the
algorithm in the blocks following the Frame To Pixel block. If the kernel size is less than 4, the
total porch must be at least 8 pixels.

• The Back porch must be at least 6 pixels. This parameter is the number of inactive pixels
before the first valid pixel in a frame.

For more information on blanking intervals, see “Configure Blanking Intervals”.

When using multipixel streaming (Number of pixels > 1) these requirements apply.

• The video format must have horizontal dimensions divisible by the Number of pixels parameter
value. The horizontal dimensions are set by these parameters: Active pixels per line, Total
pixels per line, Front porch, and Back porch. Standard video protocols 480p, 720p, 1080p, and
4k UHD support Number of pixels equal to 4 or 8.

• The minimum input frame size for multipixel streaming (either 4 or 8 pixels) is 18 rows-by-32
columns.

• Choose your kernel size and Active pixels per line such that (Active pixels per line)/(Number
of pixels) is at least the kernel width.

Extended Capabilities
C/C++ Code Generation
Generate C and C++ code using Simulink® Coder™.

This block supports C/C++ code generation for Simulink Accelerator and Rapid Accelerator modes.

1 Blocks

1-72

See Also
Blocks
Pixels To Frame

Objects
visionhdl.FrameToPixels

Topics
“Streaming Pixel Interface”

Introduced in R2015a

 Frame To Pixels

1-73

Gamma Corrector
Apply or remove gamma correction of pixel stream
Library: Vision HDL Toolbox / Conversions

Description
Gamma Corrector applies or removes gamma correction on a stream of pixels. Gamma correction
adjusts linear pixel values so that the modified values fit a curve. The de-gamma operation performs
the opposite operation to obtain linear pixel values.

Ports
This block uses a streaming pixel interface with a pixelcontrol bus for frame control signals. This
interface enables the block to operate independently of image size and format. All Vision HDL
Toolbox blocks use the same streaming interface. The block accepts and returns a scalar pixel value
and a bus that contains five control signals. The control signals indicate the validity of each pixel and
its location in the frame. To convert a frame (pixel matrix) into a serial pixel stream and control
signals, use the Frame To Pixels block. For a full description of the interface, see “Streaming Pixel
Interface”.

Input

pixel — Single image pixel
scalar

Single image pixel of a pixel stream, specified as a scalar value representing intensity. Integer and
fixed-point data types larger than 16 bits are not supported.

double and single data types are supported for simulation, but not for HDL code generation.
Data Types: uint8 | uint16 | int8 | int16 | fixed point | Boolean | double | single

ctrl — Control signals associated with pixel stream
pixelcontrol bus

The pixelcontrol bus contains five signals. The signals describe the validity of the pixel and its
location in the frame. For more information, see “Pixel Control Bus”.
Data Types: bus

Output

pixel — Single image pixel
scalar

Single image pixel in a pixel stream, returned as a scalar value representing intensity. The data type
of the output pixels is the same as the data type of the input pixels.

1 Blocks

1-74

double and single data types are supported for simulation, but not for HDL code generation.
Data Types: uint8 | uint16 | int8 | int16 | fixed point | Boolean | double | single

ctrl — Control signals associated with pixel stream
pixelcontrol bus

The pixelcontrol bus contains five signals. The signals describe the validity of the pixel and its
location in the frame. For more information, see “Pixel Control Bus”.
Data Types: bus

Parameters
Operation — Direction of pixel value adjustment
Gamma (default) | De-gamma

Direction of pixel value adjustment, specified as one of these options:

• Gamma — Apply gamma correction.
• De-gamma — Remove gamma correction.

Gamma — Target gamma value
2.2 (default) | scalar greater than or equal to 1

Target gamma value, specified as a scalar greater than or equal to 1.

• When you set Operation to Gamma, Gamma is the target gamma value of the output video
stream.

• When you set Operation to De-gamma, Gamma is the gamma value of the input video stream.

Linear segment — Include a linear segment in the gamma curve
on (default) | off

Option to include a linear segment in the gamma curve. When you select this check box, the gamma
curve has a linear portion near the origin.

Break point — Point where gamma curve and linear segment meet
0.018 (default) | scalar between 0 and 1

Pixel value that corresponds to the point where the gamma curve and linear segment meet, specified
as a scalar value between 0 and 1, exclusive.

Dependencies

This parameter applies only when you select the Linear segment check box.

Algorithms
For the equations used for gamma correction, see Gamma Correction in the Computer Vision Toolbox
documentation.

To save hardware resources, the block implements the gamma correction equation as a lookup table.
The lookup table maps each input pixel value to a corrected output value.

 Gamma Corrector

1-75

Latency

The latency of the Gamma Corrector block is 2 cycles.

Extended Capabilities
C/C++ Code Generation
Generate C and C++ code using Simulink® Coder™.

This block supports C/C++ code generation for Simulink accelerator and rapid accelerator modes
and for DPI component generation.

HDL Code Generation
Generate Verilog and VHDL code for FPGA and ASIC designs using HDL Coder™.

HDL Coder provides additional configuration options that affect HDL implementation and synthesized
logic.

HDL Architecture

This block has a single, default HDL architecture.

HDL Block Properties

ConstrainedOutputPi
peline

Number of registers to place at the outputs by moving existing delays
within your design. Distributed pipelining does not redistribute these
registers. The default is 0. For more details, see
“ConstrainedOutputPipeline” (HDL Coder).

InputPipeline Number of input pipeline stages to insert in the generated code.
Distributed pipelining and constrained output pipelining can move these
registers. The default is 0. For more details, see “InputPipeline” (HDL
Coder).

LUTRegisterResetTyp
e

The reset type of the lookup table output register. Select none to
synthesize the lookup table to a ROM when your target is an FPGA. See
also “LUTRegisterResetType” (HDL Coder).

OutputPipeline Number of output pipeline stages to insert in the generated code.
Distributed pipelining and constrained output pipelining can move these
registers. The default is 0. For more details, see “OutputPipeline” (HDL
Coder).

See Also
Blocks
Frame To Pixels | Gamma Correction

Objects
visionhdl.GammaCorrector

Introduced in R2015a

1 Blocks

1-76

Grayscale Closing
Morphological closing of grayscale pixel data
Library: Vision HDL Toolbox / Morphological Operations

Description
The Grayscale Closing block performs morphological dilation followed by morphological erosion by
using the same neighborhood for both calculations. The block operates on a stream of pixel intensity
values. You can specify a neighborhood or structuring element of up to 32-by-32 pixels.

For line, square, or rectangle structuring elements more than 8 pixels wide, the block uses the Van
Herk algorithm to find the maximum and minimum pixel values. For structuring elements less than 8
pixels wide, or that contain zero elements, the block implements a pipelined comparison tree to find
the maximum and minimum pixel values.

Ports
This block uses a streaming pixel interface with a pixelcontrol bus for frame control signals. This
interface enables the block to operate independently of image size and format. All Vision HDL
Toolbox blocks use the same streaming interface. The block accepts and returns a scalar pixel value
and a bus that contains five control signals. The control signals indicate the validity of each pixel and
its location in the frame. To convert a frame (pixel matrix) into a serial pixel stream and control
signals, use the Frame To Pixels block. For a full description of the interface, see “Streaming Pixel
Interface”.

Input

pixel — Single image pixel
scalar

Single image pixel in a pixel stream, specified as a scalar that represents grayscale intensity.

double and single data types are supported for simulation, but not for HDL code generation.
Data Types: uint8 | uint16 | uint32 | int8 | int16 | int32 | fixed point | Boolean | double |
single

ctrl — Control signals associated with pixel stream
pixelcontrol bus

The pixelcontrol bus contains five signals. The signals describe the validity of the pixel and its
location in the frame. For more information, see “Pixel Control Bus”.
Data Types: bus

 Grayscale Closing

1-77

Output

pixel — Single output pixel
scalar

Single output pixel transformed by a morphological operation, returned as a scalar value.

The data type of this output pixel is the same as the data type of the input pixel.
Data Types: single | double | uint8 | uint16 | uint32 | Boolean | fixdt(0,N,M)

ctrl — Control signals associated with pixel stream
pixelcontrol bus

The pixelcontrol bus contains five signals. The signals describe the validity of the pixel and its
location in the frame. For more information, see “Pixel Control Bus”.
Data Types: bus

Parameters
Neighborhood — Pixel neighborhood
ones(9,9) (default) | vector or matrix of 1s and 0s

Pixel neighborhood, specified as a vector or matrix of binary values.

The block supports flat neighborhoods of up to 32-by-32 pixels. To use a structuring element, specify
the Neighborhood as getnhood(strel(shape)). The minimum neighborhood size is a 2-by-2
matrix, or a 2-by-1 column vector. If the neighborhood is a row vector, it must be at least 8 columns
wide and contain no zeros.

Line buffer size — Size of line memory buffer
2048 (default) | positive integer

Specify a power of two that accommodates the number of active pixels in a single horizontal line.

If you specify a value that is not a power of two, the block uses the next largest power of two. The
block allocates (neighborhood lines – 1)-by-Line buffer size memory locations to store the pixels.

Tips
• When you use a block with an internal line buffer inside an Enabled Subsystem, the enable signal

pattern must maintain the timing of the pixel stream, including the minimum blanking intervals. If
the enable pattern corrupts the timing of the pixel stream, you might see partial output frames,
corrupted pixel stream control signals, or mismatches between Simulink and HDL simulation
results. You may need to extend the blanking intervals to accommodate for cycles when the enable
is low. For more information, see “Configure Blanking Intervals”.

Algorithms
The closing algorithm is morphological dilation followed by morphological erosion. For the respective
kernel architectures, see the Grayscale Dilation and Grayscale Erosion reference pages.

1 Blocks

1-78

The block pads the image with zeros for the dilation operation and with ones for the erosion
operation. For more information, see “Edge Padding”.

Latency

The total latency of the block is the line buffer latency plus the latency of the kernel calculation. The
line buffer latency includes edge padding. Morphological closing is a compound operation, so this
block contains a second line buffer between the dilation kernel and the erosion kernel. To determine
the exact latency for any configuration of the block, monitor the number of time steps between the
input control signals and the output control signals.

The latency of a Van Herk kernel for a neighborhood of m-by-n pixels is 2m + log2(n). The block
implements this kernel for line, square, or rectangle structuring elements more than 8 pixels wide,
with no pixels set to zero.

The latency of a comparison tree kernel for a neighborhood of m-by-n pixels is log2(m)+log2(n).

Note When you use edge padding, use a horizontal blanking interval greater than twice the kernel
width. This interval lets the block finish processing one line before it starts processing the next one,
including adding padding pixels before and after the active pixels in the line. Standard streaming
video formats use a horizontal blanking interval of about 25% of the frame width. This interval is
much larger than the filters applied to each frame. When you disable edge padding, the horizontal
blanking interval must be at least 12 cycles and is independent of the kernel size. If you are using a
custom video format, set the horizontal blanking interval by using the Frame To Pixels block
parameters. The horizontal blanking interval is equal to Total pixels per line – Active pixels per
line or, equivalently, Front porch + Back porch. For more information, see “Configure Blanking
Intervals”.

Extended Capabilities
C/C++ Code Generation
Generate C and C++ code using Simulink® Coder™.

This block supports C/C++ code generation for Simulink accelerator and rapid accelerator modes
and for DPI component generation.

HDL Code Generation
Generate Verilog and VHDL code for FPGA and ASIC designs using HDL Coder™.

 Grayscale Closing

1-79

HDL Coder provides additional configuration options that affect HDL implementation and synthesized
logic.

HDL Architecture

This block has a single, default HDL architecture.

HDL Block Properties

ConstrainedOutputPi
peline

Number of registers to place at the outputs by moving existing delays
within your design. Distributed pipelining does not redistribute these
registers. The default is 0. For more details, see
“ConstrainedOutputPipeline” (HDL Coder).

InputPipeline Number of input pipeline stages to insert in the generated code.
Distributed pipelining and constrained output pipelining can move these
registers. The default is 0. For more details, see “InputPipeline” (HDL
Coder).

OutputPipeline Number of output pipeline stages to insert in the generated code.
Distributed pipelining and constrained output pipelining can move these
registers. The default is 0. For more details, see “OutputPipeline” (HDL
Coder).

Restrictions

You cannot generate HDL code for this block if it is inside a Resettable Synchronous Subsystem.

See Also
Closing | Frame To Pixels | Grayscale Dilation | Grayscale Erosion | visionhdl.GrayscaleClosing

Topics
“Types of Morphological Operations” (Image Processing Toolbox)
“Structuring Elements” (Image Processing Toolbox)

Introduced in R2016a

1 Blocks

1-80

Grayscale Dilation
Morphological dilation of grayscale pixel data
Library: Vision HDL Toolbox / Morphological Operations

Description
The Grayscale Dilation block performs morphological dilation on a stream of pixel intensity values.
You can specify a neighborhood or structuring element of up to 32-by-32 pixels. For line, square, or
rectangle structuring elements more than 8 pixels wide, the block uses the Van Herk algorithm to find
the maximum pixel value. This algorithm uses only three comparators to find the maximums of all the
rows, and then uses a comparison tree to find the maximum pixel value of the row results.

For structuring elements less than 8 pixels wide, or that contain zero elements, the block implements
a pipelined comparison tree for each row of the neighborhood. An additional comparison tree finds
the maximum pixel value of the row results. If the structuring element contains zeros that exclude
pixels, the algorithm saves hardware resources by not implementing comparators for those pixel
locations.

Ports
This block uses a streaming pixel interface with a pixelcontrol bus for frame control signals. This
interface enables the block to operate independently of image size and format. All Vision HDL
Toolbox blocks use the same streaming interface. The block accepts and returns a scalar pixel value
and a bus that contains five control signals. The control signals indicate the validity of each pixel and
its location in the frame. To convert a frame (pixel matrix) into a serial pixel stream and control
signals, use the Frame To Pixels block. For a full description of the interface, see “Streaming Pixel
Interface”.

Input

pixel — Single image pixel
scalar

Single image pixel in a pixel stream, specified as a scalar that represents grayscale intensity.

double and single data types are supported for simulation, but not for HDL code generation.
Data Types: uint8 | uint16 | uint32 | int8 | int16 | int32 | fixed point | Boolean | double |
single

ctrl — Control signals associated with pixel stream
pixelcontrol bus

The pixelcontrol bus contains five signals. The signals describe the validity of the pixel and its
location in the frame. For more information, see “Pixel Control Bus”.
Data Types: bus

 Grayscale Dilation

1-81

Output

pixel — Single output pixel
scalar

Single output pixel transformed by a morphological operation, returned as a scalar value.

The data type of this output pixel is the same as the data type of the input pixel.
Data Types: single | double | uint8 | uint16 | uint32 | Boolean | fixdt(0,N,M)

ctrl — Control signals associated with pixel stream
pixelcontrol bus

The pixelcontrol bus contains five signals. The signals describe the validity of the pixel and its
location in the frame. For more information, see “Pixel Control Bus”.
Data Types: bus

Parameters
Neighborhood — Pixel neighborhood
ones(7,7) (default) | vector or matrix of 1s and 0s

Pixel neighborhood, specified as a vector or matrix of binary values.

The block supports flat neighborhoods of up to 32-by-32 pixels. To use a structuring element, specify
the Neighborhood as getnhood(strel(shape)). The minimum neighborhood size is a 2-by-2
matrix, or a 2-by-1 column vector. If the neighborhood is a row vector, it must be at least 8 columns
wide and contain no zeros.

Line buffer size — Size of line memory buffer
2048 (default) | positive integer

Specify a power of two that accommodates the number of active pixels in a single horizontal line.

If you specify a value that is not a power of two, the block uses the next largest power of two. The
block allocates (neighborhood lines – 1)-by-Line buffer size memory locations to store the pixels.

Tips
• When you use a block with an internal line buffer inside an Enabled Subsystem, the enable signal

pattern must maintain the timing of the pixel stream, including the minimum blanking intervals. If
the enable pattern corrupts the timing of the pixel stream, you might see partial output frames,
corrupted pixel stream control signals, or mismatches between Simulink and HDL simulation
results. You may need to extend the blanking intervals to accommodate for cycles when the enable
is low. For more information, see “Configure Blanking Intervals”.

Algorithms
The block pads the image with zeros for the dilation operation. For more information, see “Edge
Padding”.

1 Blocks

1-82

Van Herk Implementation

For line, square, or rectangle structuring elements more than 8 pixels wide, the block implements a
Van Herk algorithm. All pixels in the structuring element must be set to one. The block decomposes
the structuring element into rows and serially finds the maximum pixel value in each row by using the
Van Herk algorithm. If the size of the input frame is not a multiple of m pixels, the line memory also
adds horizontal padding to a multiple of m. This implementation uses only three comparators total for
all rows. Then, if there is more than one row, it calculates the maximum pixel value of the row results
by using a comparison tree. The diagram indicates the latency of each computation block.

The Van Herk kernel computes a running forward maximum and a running backward maximum of the
pixel values in each row of the neighborhood. For this computation, the pixels in the row must be
buffered and the order reversed. The buffer adds latency relative to the comparison tree
implementation. The Mirror Buffer is a ping-pong RAM of m pixels, where one memory reads values
in reverse order while the other memory is writing. The kernel uses 3+n-1 comparators.

 Grayscale Dilation

1-83

Comparison Tree Implementation

For structuring elements smaller than 8 pixels wide or with one or more pixels set to zero, the block
implements a comparison tree.

The diagram shows the architecture of the dilation operation. The algorithm finds the maximum pixel
value of each row of the neighborhood in parallel. Then it calculates the maximum pixel value of the
rows using another comparison tree. The diagram indicates the latency of each computation block.

For a rectangular neighborhood that is m pixels wide, the first-stage comparison trees contain m – 1
comparators over log2(m) clock cycles. For instance, for a rectangular neighborhood that is 7 pixels
wide, the comparison tree has six comparators over 3 clock cycles.

If the neighborhood that you specify contains zeroes, the generated HDL excludes the comparator for
the zero locations. The pipeline delay through the comparison tree does not change. For instance, for
a nonrectangular neighborhood with a row of [0 0 1 1 0 0 1], the comparison tree for that row
contains two comparators and still uses 3 clock cycles.

1 Blocks

1-84

Latency

The latency of the operation is the line buffer latency plus the latency of the kernel calculation. The
line buffer latency includes edge padding.

The latency of a Van Herk kernel for a neighborhood of m-by-n pixels is 2m + log2(n). The block
implements this kernel for line, square, or rectangle structuring elements more than 8 pixels wide,
with no pixels set to zero.

The latency of a comparison tree kernel for a neighborhood of m-by-n pixels is log2(m)+log2(n). The
block implements this kernel for structuring elements smaller than 8 pixels wide or with one or more
pixels set to zero.

Note When you use edge padding, use a horizontal blanking interval greater than twice the kernel
width. This interval lets the block finish processing one line before it starts processing the next one,
including adding padding pixels before and after the active pixels in the line. Standard streaming
video formats use a horizontal blanking interval of about 25% of the frame width. This interval is
much larger than the filters applied to each frame. When you disable edge padding, the horizontal
blanking interval must be at least 12 cycles and is independent of the kernel size. If you are using a
custom video format, set the horizontal blanking interval by using the Frame To Pixels block
parameters. The horizontal blanking interval is equal to Total pixels per line – Active pixels per
line or, equivalently, Front porch + Back porch. For more information, see “Configure Blanking
Intervals”.

 Grayscale Dilation

1-85

Extended Capabilities
C/C++ Code Generation
Generate C and C++ code using Simulink® Coder™.

This block supports C/C++ code generation for Simulink accelerator and rapid accelerator modes
and for DPI component generation.

HDL Code Generation
Generate Verilog and VHDL code for FPGA and ASIC designs using HDL Coder™.

HDL Coder provides additional configuration options that affect HDL implementation and synthesized
logic.

HDL Architecture

This block has a single, default HDL architecture.

HDL Block Properties

ConstrainedOutputPi
peline

Number of registers to place at the outputs by moving existing delays
within your design. Distributed pipelining does not redistribute these
registers. The default is 0. For more details, see
“ConstrainedOutputPipeline” (HDL Coder).

InputPipeline Number of input pipeline stages to insert in the generated code.
Distributed pipelining and constrained output pipelining can move these
registers. The default is 0. For more details, see “InputPipeline” (HDL
Coder).

OutputPipeline Number of output pipeline stages to insert in the generated code.
Distributed pipelining and constrained output pipelining can move these
registers. The default is 0. For more details, see “OutputPipeline” (HDL
Coder).

Restrictions

You cannot generate HDL code for this block if it is inside a Resettable Synchronous Subsystem.

See Also
Dilation | Frame To Pixels | Grayscale Erosion | visionhdl.GrayscaleDilation

Topics
“Types of Morphological Operations” (Image Processing Toolbox)
“Structuring Elements” (Image Processing Toolbox)

Introduced in R2016a

1 Blocks

1-86

Grayscale Erosion
Morphological erosion of grayscale pixel data
Library: Vision HDL Toolbox / Morphological Operations

Description
The Grayscale Erosion block performs morphological erosion on a stream of pixel intensity values.
You can specify a neighborhood or structuring element of up to 32-by-32 pixels. For line, square, or
rectangle structuring elements more than 8 pixels wide, the block uses the Van Herk algorithm to find
the minimum pixel value. This algorithm uses only three comparators to find the minimum pixel
values of all the rows, then uses a comparison tree to find the minimum pixel value of the row results.

For structuring elements less than 8 pixels wide, or that contain zero elements, the block implements
a pipelined comparison tree for each row of the neighborhood. An additional comparison tree finds
the minimum pixel value of the row results. If the structuring element contains zeros that mask off
pixels, the algorithm saves hardware resources by not implementing comparators for those pixel
locations.

Ports
This block uses a streaming pixel interface with a pixelcontrol bus for frame control signals. This
interface enables the block to operate independently of image size and format. All Vision HDL
Toolbox blocks use the same streaming interface. The block accepts and returns a scalar pixel value
and a bus that contains five control signals. The control signals indicate the validity of each pixel and
its location in the frame. To convert a frame (pixel matrix) into a serial pixel stream and control
signals, use the Frame To Pixels block. For a full description of the interface, see “Streaming Pixel
Interface”.

Input

pixel — Single image pixel
scalar

Single image pixel in a pixel stream, specified as a scalar that represents grayscale intensity.

double and single data types are supported for simulation, but not for HDL code generation.
Data Types: uint8 | uint16 | uint32 | int8 | int16 | int32 | fixed point | Boolean | double |
single

ctrl — Control signals associated with pixel stream
pixelcontrol bus

The pixelcontrol bus contains five signals. The signals describe the validity of the pixel and its
location in the frame. For more information, see “Pixel Control Bus”.
Data Types: bus

 Grayscale Erosion

1-87

Output

pixel — Single output pixel
scalar

Single output pixel transformed by a morphological operation, returned as a scalar value.

The data type of this output pixel is the same as the data type of the input pixel.
Data Types: single | double | uint8 | uint16 | uint32 | Boolean | fixdt(0,N,M)

ctrl — Control signals associated with pixel stream
pixelcontrol bus

The pixelcontrol bus contains five signals. The signals describe the validity of the pixel and its
location in the frame. For more information, see “Pixel Control Bus”.
Data Types: bus

Parameters
Neighborhood — Pixel neighborhood
ones(3,3) (default) | vector or matrix of 1s and 0s

Pixel neighborhood, specified as a vector or matrix of binary values.

The block supports flat neighborhoods of up to 32-by-32 pixels. To use a structuring element, specify
the Neighborhood as getnhood(strel(shape)). The minimum neighborhood size is a 2-by-2
matrix, or a 2-by-1 column vector. If the neighborhood is a row vector, it must be at least 8 columns
wide and contain no zeros.

Line buffer size — Size of line memory buffer
2048 (default) | positive integer

Specify a power of two that accommodates the number of active pixels in a single horizontal line.

If you specify a value that is not a power of two, the block uses the next largest power of two. The
block allocates (neighborhood lines – 1)-by-Line buffer size memory locations to store the pixels.

Tips
• When you use a block with an internal line buffer inside an Enabled Subsystem, the enable signal

pattern must maintain the timing of the pixel stream, including the minimum blanking intervals. If
the enable pattern corrupts the timing of the pixel stream, you might see partial output frames,
corrupted pixel stream control signals, or mismatches between Simulink and HDL simulation
results. You may need to extend the blanking intervals to accommodate for cycles when the enable
is low. For more information, see “Configure Blanking Intervals”.

Algorithms
The block pads the image with ones for the erosion operation. For more information, see “Edge
Padding”.

1 Blocks

1-88

Van Herk Implementation

For line, square, or rectangle structuring elements more than 8 pixels wide, the block implements a
Van Herk algorithm. All pixels in the structuring element must be set to one. The block decomposes
the structuring element into rows and serially finds the minimum pixel value of each row by using the
Van Herk algorithm. If the size of the input frame is not a multiple of m pixels, the line memory also
adds horizontal padding to a multiple of m. This implementation uses only three comparators total for
all rows. Then, if there is more than one row, it calculates the minimum pixel value of the row results
by using a comparison tree. The diagram indicates the latency of each computation block.

The Van Herk kernel computes a running forward minimum and a running backward minimum of the
pixel values in each row of the neighborhood. For this computation, the pixels in the row must be
buffered and the order reversed. The buffer adds latency relative to the comparison tree
implementation. The Mirror Buffer is a ping-pong RAM of m pixels, where one memory reads values
in reverse order while the other memory is writing. The kernel uses 3+n-1 comparators.

 Grayscale Erosion

1-89

Comparison Tree Implementation

For structuring elements smaller than 8 pixels wide or with one or more pixels set to zero, the block
implements a comparison tree.

The diagram shows the architecture of the erosion operation. The algorithm finds the minimum pixel
value of each row of the neighborhood in parallel. Then it calculates the minimum pixel value of the
rows using another comparison tree. The diagram indicates the latency of each computation block.

For a rectangular neighborhood that is m pixels wide, the first-stage comparison trees contain m – 1
comparators over log2(m) clock cycles. For instance, for a rectangular neighborhood that is 7 pixels
wide, the comparison tree has six comparators over 3 clock cycles.

If the neighborhood you specify contains zeroes, the generated HDL excludes the comparator for the
zero locations. The pipeline delay through the comparison tree does not change. For instance, for a
nonrectangular neighborhood with a row of [0 0 1 1 0 0 1], the comparison tree for that row
contains two comparators and still uses 3 clock cycles.

1 Blocks

1-90

Latency

The latency of the operation is the line buffer latency plus the latency of the kernel calculation. The
line buffer latency includes edge padding.

The latency of a Van Herk kernel for a neighborhood of m-by-n pixels is 2m + log2(n). The block
implements this kernel for line, square, or rectangle structuring elements more than 8 pixels wide,
with no pixels set to zero.

The latency of a comparison tree kernel for a neighborhood of m-by-n pixels is log2(m)+log2(n). The
block implements this kernel for structuring elements smaller than 8 pixels wide or with one or more
pixels set to zero.

Note When you use edge padding, use a horizontal blanking interval greater than twice the kernel
width. This interval lets the block finish processing one line before it starts processing the next one,
including adding padding pixels before and after the active pixels in the line. Standard streaming
video formats use a horizontal blanking interval of about 25% of the frame width. This interval is
much larger than the filters applied to each frame. When you disable edge padding, the horizontal
blanking interval must be at least 12 cycles and is independent of the kernel size. If you are using a
custom video format, set the horizontal blanking interval by using the Frame To Pixels block
parameters. The horizontal blanking interval is equal to Total pixels per line – Active pixels per
line or, equivalently, Front porch + Back porch. For more information, see “Configure Blanking
Intervals”.

 Grayscale Erosion

1-91

Extended Capabilities
C/C++ Code Generation
Generate C and C++ code using Simulink® Coder™.

This block supports C/C++ code generation for Simulink accelerator and rapid accelerator modes
and for DPI component generation.

HDL Code Generation
Generate Verilog and VHDL code for FPGA and ASIC designs using HDL Coder™.

HDL Coder provides additional configuration options that affect HDL implementation and synthesized
logic.

HDL Architecture

This block has a single, default HDL architecture.

HDL Block Properties

ConstrainedOutputPi
peline

Number of registers to place at the outputs by moving existing delays
within your design. Distributed pipelining does not redistribute these
registers. The default is 0. For more details, see
“ConstrainedOutputPipeline” (HDL Coder).

InputPipeline Number of input pipeline stages to insert in the generated code.
Distributed pipelining and constrained output pipelining can move these
registers. The default is 0. For more details, see “InputPipeline” (HDL
Coder).

OutputPipeline Number of output pipeline stages to insert in the generated code.
Distributed pipelining and constrained output pipelining can move these
registers. The default is 0. For more details, see “OutputPipeline” (HDL
Coder).

Restrictions

You cannot generate HDL code for this block if it is inside a Resettable Synchronous Subsystem.

See Also
Erosion | Frame To Pixels | Grayscale Dilation | visionhdl.GrayscaleErosion

Topics
“Types of Morphological Operations” (Image Processing Toolbox)
“Structuring Elements” (Image Processing Toolbox)

Introduced in R2016a

1 Blocks

1-92

Grayscale Opening
Morphological opening of grayscale pixel data
Library: Vision HDL Toolbox / Morphological Operations

Description
The Grayscale Opening block performs morphological erosion followed by morphological dilation by
using the same neighborhood for both calculations. The block operates on a stream of pixel intensity
values. You can specify a neighborhood, or structuring element, of up to 32-by-32 pixels. For line,
square, or rectangle structuring elements more than 8 pixels wide, the block uses the Van Herk
algorithm to find the maximum and minimum pixel values. For structuring elements less than 8 pixels
wide, or that contain zero elements, the block implements a pipelined comparison tree to find the
maximum and minimum pixel values.

Ports
This block uses a streaming pixel interface with a pixelcontrol bus for frame control signals. This
interface enables the block to operate independently of image size and format. All Vision HDL
Toolbox blocks use the same streaming interface. The block accepts and returns a scalar pixel value
and a bus that contains five control signals. The control signals indicate the validity of each pixel and
its location in the frame. To convert a frame (pixel matrix) into a serial pixel stream and control
signals, use the Frame To Pixels block. For a full description of the interface, see “Streaming Pixel
Interface”.

Input

pixel — Single image pixel
scalar

Single image pixel in a pixel stream, specified as a scalar that represents grayscale intensity.

double and single data types are supported for simulation, but not for HDL code generation.
Data Types: uint8 | uint16 | uint32 | int8 | int16 | int32 | fixed point | Boolean | double |
single

ctrl — Control signals associated with pixel stream
pixelcontrol bus

The pixelcontrol bus contains five signals. The signals describe the validity of the pixel and its
location in the frame. For more information, see “Pixel Control Bus”.
Data Types: bus

 Grayscale Opening

1-93

Output

pixel — Single output pixel
scalar

Single output pixel transformed by a morphological operation, returned as a scalar value.

The data type of this output pixel is the same as the data type of the input pixel.
Data Types: single | double | uint8 | uint16 | uint32 | Boolean | fixdt(0,N,M)

ctrl — Control signals associated with pixel stream
pixelcontrol bus

The pixelcontrol bus contains five signals. The signals describe the validity of the pixel and its
location in the frame. For more information, see “Pixel Control Bus”.
Data Types: bus

Parameters
Neighborhood — Pixel neighborhood
ones(5,5) (default) | vector or matrix of 1s and 0s

Pixel neighborhood, specified as a vector or matrix of binary values.

The block supports flat neighborhoods of up to 32-by-32 pixels. To use a structuring element, specify
the Neighborhood as getnhood(strel(shape)). The minimum neighborhood size is a 2-by-2
matrix, or a 2-by-1 column vector. If the neighborhood is a row vector, it must be at least 8 columns
wide and contain no zeros.

Line buffer size — Size of line memory buffer
2048 (default) | positive integer

Specify a power of two that accommodates the number of active pixels in a single horizontal line.

If you specify a value that is not a power of two, the block uses the next largest power of two. The
block allocates (neighborhood lines – 1)-by-Line buffer size memory locations to store the pixels.

Tips
• When you use a block with an internal line buffer inside an Enabled Subsystem, the enable signal

pattern must maintain the timing of the pixel stream, including the minimum blanking intervals. If
the enable pattern corrupts the timing of the pixel stream, you might see partial output frames,
corrupted pixel stream control signals, or mismatches between Simulink and HDL simulation
results. You may need to extend the blanking intervals to accommodate for cycles when the enable
is low. For more information, see “Configure Blanking Intervals”.

Algorithms
The opening algorithm is morphological erosion followed by morphological dilation. For the
respective kernel architectures, see the Grayscale Erosion and Grayscale Dilation reference pages.

1 Blocks

1-94

The line memory pads the image with zeros for the dilation operation and with ones for the erosion
operation. For more information, see “Edge Padding”.

Latency

The total latency of the block is the line buffer latency plus the latency of the kernel calculation. The
latency of the line memory includes edge padding. Morphological opening is a compound operation,
so this block contains a second line buffer between the erosion kernel and the dilation kernel. To
determine the exact latency for any configuration of the block, monitor the number of time steps
between the input control signals and the output control signals.

The latency of a Van Herk kernel for a neighborhood of m-by-n pixels is 2m + log2(n). The block
implements this kernel for line, square, or rectangle structuring elements more than 8 pixels wide,
with no pixels set to zero.

The latency of a comparison tree kernel for a neighborhood of m-by-n pixels is log2(m)+log2(n).

Note When you use edge padding, use a horizontal blanking interval greater than twice the kernel
width. This interval lets the block finish processing one line before it starts processing the next one,
including adding padding pixels before and after the active pixels in the line. Standard streaming
video formats use a horizontal blanking interval of about 25% of the frame width. This interval is
much larger than the filters applied to each frame. When you disable edge padding, the horizontal
blanking interval must be at least 12 cycles and is independent of the kernel size. If you are using a
custom video format, set the horizontal blanking interval by using the Frame To Pixels block
parameters. The horizontal blanking interval is equal to Total pixels per line – Active pixels per
line or, equivalently, Front porch + Back porch. For more information, see “Configure Blanking
Intervals”.

Extended Capabilities
C/C++ Code Generation
Generate C and C++ code using Simulink® Coder™.

This block supports C/C++ code generation for Simulink accelerator and rapid accelerator modes
and for DPI component generation.

HDL Code Generation
Generate Verilog and VHDL code for FPGA and ASIC designs using HDL Coder™.

 Grayscale Opening

1-95

HDL Coder provides additional configuration options that affect HDL implementation and synthesized
logic.

HDL Architecture

This block has a single, default HDL architecture.

HDL Block Properties

ConstrainedOutputPi
peline

Number of registers to place at the outputs by moving existing delays
within your design. Distributed pipelining does not redistribute these
registers. The default is 0. For more details, see
“ConstrainedOutputPipeline” (HDL Coder).

InputPipeline Number of input pipeline stages to insert in the generated code.
Distributed pipelining and constrained output pipelining can move these
registers. The default is 0. For more details, see “InputPipeline” (HDL
Coder).

OutputPipeline Number of output pipeline stages to insert in the generated code.
Distributed pipelining and constrained output pipelining can move these
registers. The default is 0. For more details, see “OutputPipeline” (HDL
Coder).

Restrictions

You cannot generate HDL code for this block if it is inside a Resettable Synchronous Subsystem.

See Also
Frame To Pixels | Grayscale Dilation | Grayscale Erosion | Opening |
visionhdl.GrayscaleOpening

Topics
“Types of Morphological Operations” (Image Processing Toolbox)
“Structuring Elements” (Image Processing Toolbox)

Introduced in R2016a

1 Blocks

1-96

Histogram
Frequency distribution of pixel values in video stream
Library: Vision HDL Toolbox / Statistics

Description
The Histogram block computes the frequency distribution of pixel values in a video stream. You can
configure the number and size of the bins. The block provides a read interface for accessing each bin.
The block keeps a running histogram until you reset the bin values.

Ports
This block uses a streaming pixel interface with a bus for frame control signals. This interface
enables the block to operate independently of image size and format. All Vision HDL Toolbox blocks
use the same streaming interface. The block accepts a scalar pixel value and a bus that contains five
control signals. The control signals indicate the validity of each pixel and its location in the frame. To
convert a frame (pixel matrix) into a pixel stream and control signals, use the Frame To Pixels block.
For a full description of the interface, see “Streaming Pixel Interface”.

Input

pixel — Single image pixel
scalar

Single image pixel, specified as an unsigned integer scalar value.

double and single data types are supported for simulation, but not for HDL code generation.
Data Types: single | double | uint | fixdt(0,N,0)

ctrl — Control signals associated with pixel stream
pixelcontrol bus

The pixelcontrol bus contains five signals. The signals describe the validity of the pixel and its
location in the frame. For more information, see “Pixel Control Bus”.
Data Types: bus

binAddr — Bin number for reading histogram values
integer

The block captures this value each cycle that the readRdy output port is 1 (true). The data type is
fixdt(0,N,0), N = 5,6,...,12. The word length must be log2(Number of bins).
Data Types: fixdt(0,N,0)

 Histogram

1-97

binReset — Reset histogram bin values
scalar

A binReset value of 1 (true) triggers a RAM initialization sequence that resets the histogram bin
values. Reset takes NumBins cycles to clear all locations. Input signals are ignored during this
interval.
Data Types: Boolean

Output

readRdy — Indicates histogram bins available for read
scalar

When readRdy is 1 (true), the histogram bins are ready to read. The block returns readRdy set to 1
(true) two cycles after the final pixel of a frame.
Data Types: Boolean

hist — Bin value corresponding to requested address
integer

Histogram bin value corresponding to the requested address, binAddr. The Data type parameter
specifies the data type for this value.
Data Types: fixed point

validOut — Indicates that histogram value is valid
scalar

When validOut is 1 (true), the histogram bin value, hist, is valid.
Data Types: Boolean

Parameters
Number of bins — Number of histogram bins
256 (default) | power of 2 between 32 and 4096

Choose the number of bins depending on the input word length (WL). If the number of bins is less
than 2WL, the block truncates the least-significant bits of each pixel. If the number of bins is greater
than 2WL, some bins are not used, and after you synthesize your design it will use more hardware
resources than necessary.

Data type — Data type of histogram bin values
Unsigned fixed point (default) | double | single

Data type of histogram bin values.

double and single data types are supported for simulation, but not for HDL code generation.

Word length — Word length of histogram bins
16 (default) | integer

Word length of the histogram bins. If a bin overflows, the count saturates and the block shows a
warning.

1 Blocks

1-98

Dependencies

This parameter applies when you set Data type to Unsigned fixed point.

Algorithms
RAM Reset and Ready Sequence

Before sending the first input data, you must wait Number of bins cycles for the block to reset the
RAM. This initial reset happens without asserting binReset.

You cannot read histogram bins and apply pixel data at the same time. To read the bin values, wait for
the readRdy port to be 1 (true), and then apply each bin address of interest to the binAddr port.
The block provides the corresponding histogram values on the hist port, with an accompanying
validOut signal.

The histogram values persist and accumulate across frames until you assert binReset. At that time,
the block takes Number of bins cycles to clear the RAM and be ready for new input. Other input
signals are ignored during reset.

The diagram shows an overview of the reset sequence. vStart and vEnd are control signals in the
pixelcontrol input bus.

The diagram shows the automatic startup reset, followed by a frame of video input. The read window
starts when readRdy is asserted. The binReset signal initiates a bin reset. The next input frame is
not applied until after the reset is complete.

The following diagram illustrates a bin read sequence. vEnd is a control signal in the pixelcontrol
input bus. validOut indicates when the bin values on hist are available.

 Histogram

1-99

After the last pixel of a video frame, indicated by vEnd = true, the block asserts readRdy to show
that the histogram is ready for reading. Two cycles after applying a bin address, the block provides
the value of that bin on hist, with a corresponding valid signal. You can request the last bin address
and assert binReset at the same time.

Latency

The block sets readRdy to true two cycles after receiving the last pixel of a frame. The input
pixelcontrol bus indicates the last pixel of a frame by vEnd = true. While readRdy is true, the
block captures binAddr requests on each cycle. The block provides the corresponding histogram bin
values on hist two cycles later.

Extended Capabilities
C/C++ Code Generation
Generate C and C++ code using Simulink® Coder™.

This block supports C/C++ code generation for Simulink accelerator and rapid accelerator modes
and for DPI component generation.

HDL Code Generation
Generate Verilog and VHDL code for FPGA and ASIC designs using HDL Coder™.

HDL Coder provides additional configuration options that affect HDL implementation and synthesized
logic.

HDL Architecture

This block has a single, default HDL architecture.

HDL Block Properties

ConstrainedOutputPi
peline

Number of registers to place at the outputs by moving existing delays
within your design. Distributed pipelining does not redistribute these
registers. The default is 0. For more details, see
“ConstrainedOutputPipeline” (HDL Coder).

1 Blocks

1-100

InputPipeline Number of input pipeline stages to insert in the generated code.
Distributed pipelining and constrained output pipelining can move these
registers. The default is 0. For more details, see “InputPipeline” (HDL
Coder).

OutputPipeline Number of output pipeline stages to insert in the generated code.
Distributed pipelining and constrained output pipelining can move these
registers. The default is 0. For more details, see “OutputPipeline” (HDL
Coder).

Restrictions

You cannot generate HDL for this block inside a Resettable Synchronous Subsystem.

See Also
Blocks
2-D Histogram | Frame To Pixels

Objects
visionhdl.Histogram

Functions
imhist

Introduced in R2015a

 Histogram

1-101

Image Filter
2-D FIR filtering
Library: Vision HDL Toolbox / Filtering

Description
The Image Filter block performs two-dimensional finite impulse response (FIR) filtering on a pixel
stream and supports the use of programmable filter coefficients.

Ports
This block uses a streaming pixel interface with a bus for frame control signals. This interface
enables the block to operate independently of image size and format. The pixel ports on this block
support single pixel streaming or multipixel streaming. Single pixel streaming accepts and returns a
single pixel value each clock cycle. Multipixel streaming accepts and returns 4 or 8 pixels per clock
cycle to support high-frame-rate or high-resolution formats. Along with the pixel, the block accepts
and returns a pixelcontrol bus that contains five control signals. The control signals indicate the
validity of each pixel and their location in the frame. For multipixel streaming, one set of control
signals applies to all four or eight pixels in the vector. To convert a frame (pixel matrix) into a serial
pixel stream and control signals, use the Frame To Pixels block. For a full description of the interface,
see “Streaming Pixel Interface”.

Input

pixel — Input pixel or multipixel vector
scalar | vector

This block supports single pixel streaming or multipixel streaming. For single pixel streaming, specify
a single input pixel as a scalar intensity value. For multipixel streaming, specify a vector of four or
eight pixel intensity values. For details of how to set up your model for multipixel streaming, see
“Filter Multipixel Video Streams”.

This block does not support multicomponent streaming. To process multicomponent streams,
replicate the block for each component. The pixelcontrol bus for all components is identical, so
you can connect a single bus to multiple replicated blocks.

double and single data types are supported for simulation, but not for HDL code generation.
Data Types: uint8 | uint16 | uint32 | int8 | int16 | int32 | fixed point | Boolean | double |
single

ctrl — Control signals associated with pixel stream
pixelcontrol bus

The pixelcontrol bus contains five signals. The signals describe the validity of the pixel and its
location in the frame. For more information, see “Pixel Control Bus”.

1 Blocks

1-102

For multipixel streaming, each vector of pixel values has one set of control signals. Because the
vector has only one valid signal, the pixels in the vector must be either all valid or all invalid. The
hStart and vStart signals apply to the pixel with the lowest index in the vector. The hEnd and
vEnd signals apply to the pixel with the highest index in the vector.
Data Types: bus

coeff — Filter coefficients
matrix

Specify the filter coefficients as a 2-D matrix of numeric values. Each dimension of the matrix must
have at least 2 elements, but no more than 64 elements.

double and single data types are supported for simulation, but not for HDL code generation.

The block samples the values from the coeff port only at the start of a frame and ignores any changes
within a frame.

Dependencies

To enable this port, set the Filter coefficients source parameter to Input port.
Data Types: single | double | int8 | int16 | int32 | int64 | uint8 | uint16 | uint32 | uint64 |
fixed point

Output

pixel — Output pixel or multipixel vector
scalar | vector

This block supports single pixel streaming or multipixel streaming. When using single pixel
streaming, the block returns a single pixel as a scalar intensity value. When using multipixel
streaming, the block returns a vector of intensity values. This vector is the same size as the input
pixel vector. For details of how to set up your model for multipixel streaming, see “Filter Multipixel
Video Streams”.

The output pixel data type is the same as the data type of the input pixels.

double and single data types are supported for simulation, but not for HDL code generation.
Data Types: uint8 | uint16 | uint32 | int8 | int16 | int32 | fixed point | Boolean | double |
single

ctrl — Control signals associated with pixel stream
pixelcontrol bus

The pixelcontrol bus contains five signals. The signals describe the validity of the pixel and its
location in the frame. For more information, see “Pixel Control Bus”.

For multipixel streaming, each vector of pixel values has one set of control signals. Because the
vector has only one valid signal, the pixels in the vector must be either all valid or all invalid. The
hStart and vStart signals apply to the pixel with the lowest index in the vector. The hEnd and
vEnd signals apply to the pixel with the highest index in the vector.
Data Types: bus

 Image Filter

1-103

Parameters
Main

Filter coefficients source — Source to provide filter coefficients
Property (default) | Input port

Select the source for specifying the filter coefficients.

• Property (default) — Use this value to specify filter coefficients using the Filter coefficients
parameter.

• Input port — Use this value to specify filter coefficients through the coeff input port.

Filter coefficients — Coefficients of filter
[1, 0; 0, -1] (default) | matrix

Specify the filter coefficients as a matrix. Each dimension of the matrix must have at least 2 elements,
but no more than 64 elements.

Dependencies

To enable this parameter, set the Filter coefficients source parameter to Property.

Padding method — Method for padding
Constant (default) | Replicate | Symmetric | None

Select one of these methods for padding the boundary of the input image. For more information about
these methods, see “Edge Padding”.

• Constant — Interpret pixels outside the image frame as having a constant value.
• Replicate — Repeat the value of pixels at the edge of the image.
• Symmetric — Set the value of the padding pixels to mirror the edge of the image.
• None — Exclude padding logic. The block does not set the pixels outside the image frame to any

particular value. This option reduces the hardware resources used by the block and the blanking
required between frames but affects the accuracy of the output pixels at the edges of the frame.
To maintain pixel stream timing, the output frame is the same size as the input frame. However, to
avoid using pixels calculated from undefined padding values, mask off the KernelSize/2 pixels
around the edge of the frame for downstream operations. For details, see “Increase Throughput
with Padding None”.

Padding value — Value used to pad boundary of input image
0 (default) | integer

Specify an integer to pad the boundary of the input image. The block casts this value to the same data
type as the input pixel.

Dependencies

To enable this parameter, set the Padding method parameter to Constant.

Line buffer size — Size of line buffer
2048 (default) | integer

Specify a power of two that accommodates the number of active pixels in a single horizontal line.

1 Blocks

1-104

If you specify a value that is not a power of two, the block uses the next largest power of two. The
block allocates (N — 1)-by-Line buffer size memory locations to store the pixels. N represents the
rows of the coefficient matrix.

Data Types

Rounding mode — Rounding mode for internal fixed-point calculations
Floor (default) | Ceiling | Convergent | Nearest | Round | Zero

Select the rounding mode for internal fixed-point calculations as Floor, Ceiling, Convergent,
Nearest, Round, and Zero. For more information about rounding modes, see “Rounding Modes”
(DSP System Toolbox).

Saturate on integer overflow — Overflow action for internal fixed-point calculations
off (default) | on

When you clear this parameter, fixed-point and integer values wrap around to zero when the value
overflows what is representable with that data type. When you select this parameter, the value
saturates at the maximum representable value.

Coefficients — Filter coefficients data type selection
Inherit: Same as first input (default) | fixdt(1, 16, 0) | <data type expression>

Select the method for determining the data type of the filter coefficients.

Click the Show data type assistant button to display the Data Type Assistant, which helps you set
the data type of the Coefficients parameter. For details, see “Specify Data Types Using Data Type
Assistant” (Simulink).

When converting the coefficients to the specified data type, the block rounds to the nearest
representable value and saturates to the maximum value if the value exceeds the maximum value
representable with the data type.

Dependencies

To enable this parameter, set the Filter coefficients source parameter to Property.

Output — Output data type selection
Inherit: Same as first input (default) | Inherit: Inherit via internal rule |
fixdt(1, 16, 0) | <data type expression>

Select the method for determining the data type of the output pixel.

Click the Show data type assistant button to display the Data Type Assistant, which helps you to set
the data type of the Output parameter. For details, see “Specify Data Types Using Data Type
Assistant” (Simulink).

Lock data type settings against changes by the fixed-point tools — Lock data
type settings
off (default) | on

Select this parameter to lock all data type settings of this block against changes by the Fixed-Point
Tool and the Fixed-Point Advisor. For more information, see “Lock the Output Data Type Setting”
(Fixed-Point Designer).

 Image Filter

1-105

Tips
• When you use a block with an internal line buffer inside an Enabled Subsystem, the enable signal

pattern must maintain the timing of the pixel stream, including the minimum blanking intervals. If
the enable pattern corrupts the timing of the pixel stream, you might see partial output frames,
corrupted pixel stream control signals, or mismatches between Simulink and HDL simulation
results. You may need to extend the blanking intervals to accommodate for cycles when the enable
is low. For more information, see “Configure Blanking Intervals”.

Algorithms
The block implements the 2-D FIR filter with a fully pipelined architecture. Each multiplier has two
pipeline stages on each input and two pipeline stages on each output. The adder is a pipelined tree
structure. HDL code generation uses symmetric, unity, or zero-value coefficients to reduce the
number of multipliers.

When you use multipixel streaming, the block uses a single line memory and implements
NumberOfPixels filter kernels in parallel. This increase in hardware resources is a trade off for
increasing throughput compared to single-pixel streaming.

When you provide coefficients using the Filter coefficients parameter, you can optimize the
multipliers for HDL code generation by using a canonical signed digit (CSD) representation or
factored CSD representation. To use a CSD of factored CSD representation, right-click the block,
select HDL Code > HDL Block Properties, and set the ConstMultiplierOptimization parameter
to csd or fcsd.

When you provide coefficients using the coeff port, the latency depends on the size of the filter
coefficients. For an N-by-M coefficient matrix provided using the coeff port, the block generates NxM
multipliers.

Latency

The latency of the block is the line buffer latency plus the latency of the kernel calculation. The line
buffer latency includes edge padding by default. The latency of the padding operation depends on the
size of the kernel. If edge padding is not necessary for your design, you can reduce the latency by
setting the Padding method parameter to None. When you use this option, the block latency does
not depend on your kernel size. To determine the exact latency for any configuration of the block,
measure the number of time steps between the input and output control signals.

Note When you use edge padding, use a horizontal blanking interval greater than twice the kernel
width. This interval lets the block finish processing one line before it starts processing the next one,

1 Blocks

1-106

including adding padding pixels before and after the active pixels in the line. Standard streaming
video formats use a horizontal blanking interval of about 25% of the frame width. This interval is
much larger than the filters applied to each frame. When you disable edge padding, the horizontal
blanking interval must be at least 12 cycles and is independent of the kernel size. If you are using a
custom video format, set the horizontal blanking interval by using the Frame To Pixels block
parameters. The horizontal blanking interval is equal to Total pixels per line – Active pixels per
line or, equivalently, Front porch + Back porch. For more information, see “Configure Blanking
Intervals”.

Extended Capabilities
C/C++ Code Generation
Generate C and C++ code using Simulink® Coder™.

This block supports C/C++ code generation for Simulink accelerator and rapid accelerator modes
and for DPI component generation.

HDL Code Generation
Generate Verilog and VHDL code for FPGA and ASIC designs using HDL Coder™.

HDL Coder provides additional configuration options that affect HDL implementation and synthesized
logic.

HDL Architecture

This block has a single, default HDL architecture.

HDL Block Properties

ConstrainedOutputPi
peline

Number of registers to place at the outputs by moving existing delays
within your design. Distributed pipelining does not redistribute these
registers. The default is 0. For more details, see
“ConstrainedOutputPipeline” (HDL Coder).

InputPipeline Number of input pipeline stages to insert in the generated code.
Distributed pipelining and constrained output pipelining can move these
registers. The default is 0. For more details, see “InputPipeline” (HDL
Coder).

OutputPipeline Number of output pipeline stages to insert in the generated code.
Distributed pipelining and constrained output pipelining can move these
registers. The default is 0. For more details, see “OutputPipeline” (HDL
Coder).

Restrictions

You cannot generate HDL code for this block if it is inside a Resettable Synchronous Subsystem.

See Also
2-D FIR Filter | Frame To Pixels | visionhdl.ImageFilter

Introduced in R2015a

 Image Filter

1-107

Image Statistics
Calculate mean, variance, and standard deviation
Library: Vision HDL Toolbox / Statistics

Description
The Image Statistics block calculates the mean, variance, and standard deviation of streaming video
data. Each calculation is performed over all pixels in the input region of interest (ROI). The block
implements the calculations by using hardware-efficient algorithms.

This block uses a streaming pixel interface with a bus for frame control signals. This interface
enables the block to operate independently of image size and format. All Vision HDL Toolbox blocks
use the same streaming interface. The block accepts a scalar pixel value and a bus that contains five
control signals. The control signals indicate the validity of each pixel and its location in the frame. To
convert a frame (pixel matrix) into a pixel stream and control signals, use the Frame To Pixels block.
For a full description of the interface, see “Streaming Pixel Interface”.

Ports
Input

pixel — Single image pixel
scalar

Single image pixel in a pixel stream, specified as a scalar that represents grayscale intensity.

double and single data types are supported for simulation, but not for HDL code generation.
Data Types: uint8 | uint16 | uint32 | int8 | int16 | int32 | fixed point | Boolean | double |
single

ctrl — Control signals associated with pixel stream
pixelcontrol bus

The pixelcontrol bus contains five signals. The signals describe the validity of the pixel and its
location in the frame. For more information, see “Pixel Control Bus”.
Data Types: bus

Output

The block uses full-precision arithmetic for internal calculation. At the output ports, intermediate
data is cast back to the input type by using the following fixed-point settings: Rounding method =
Nearest, and Overflow action = Saturate. The table shows the output word length for each
calculation, relative to the input word length (IWL).

1 Blocks

1-108

Mean Variance Std. Deviation
IWL 2×IWL 2×IWL

mean — Mean of most recent input frame completed
scalar

Mean of the most recent input frame completed, returned as a scalar. The data type of mean is same
as the data type of pixel.
Data Types: uint8 | uint16 | fixed point

var — Variance of most recent input frame completed
scalar

Variance of the most recent input frame completed, returned as a scalar. The data type of var is same
as the data type of pixel.
Data Types: uint8 | uint16 | fixed point

stdDev — Standard deviation of most recent input frame completed
scalar

Standard deviation of the most recent input frame completed, returned as a scalar. The data type of
stdDev is same as the data type of pixel.
Data Types: uint8 | uint16 | fixed point

validOut — Computations completed
boolean

The block sets this output to true when the statistic outputs for a frame are ready.
Data Types: Boolean

Parameters
Enable mean output — Calculate the mean of each input frame
off (default) | on

Select this parameter to enable the mean port and calculate the mean of each input frame.

Enable variance output — Calculate the variance of each input frame
off (default) | on

Select this parameter to enable the var port and calculate the variance of each input frame.

Enable std. deviation — Calculate the standard deviation of each input frame
off (default) | on

Select this parameter to enable the stdDev port and calculate the standard deviation of each input
frame.

 Image Statistics

1-109

Tips
• To change the size and dimensions of the ROI, you can manipulate the input video stream control

signals. See “Regions of Interest” on page 1-113.
• The number of valid pixels in the input image affects the accuracy of the mean approximation. To

avoid approximation error, use an image that contains a multiple of 64n pixels, up to 64n+1 pixels,
where n equals 0, 1, 2, or 3. For details of the mean approximation, see “Algorithm” on page 1-
110.

• The block calculates statistics over frames up to 644 (16, 777, 216) pixels in size. This size
supports HD frames.

Algorithms
Architecture

The calculations of mean, variance, and standard deviation build off each other. For hardware
efficiency, the calculation logic is shared as shown.

Mean

The equation to calculate the precise mean pixel value requires large internal word lengths and
expensive division logic.

μ = 1
M ∗ N ∑i = 1

M
∑

j = 1

N
xi j

Instead of using this equation, the block calculates the mean by a series of four accumulators that
compute the mean of a segment of pixels. First, the block finds the sum of a window of 64 pixels, and
normalizes.

μL1 = 1
64 ∑n = 1

64
xn

Then it accumulates 64 of the previous windows, and normalizes.

μL2 = 1
64 ∑n = 1

64
μnL1

1 Blocks

1-110

A third accumulator sums 64 of the 64×64 windows, and normalizes the same way.

μL3 = 1
64 ∑n = 1

64
μnL2

The fourth accumulator sums 64 of the 64×64×64 windows and normalizes.

μL4 = 1
64 ∑n = 1

64
μnL3

Each valid pixel is accumulated as it arrives. Its location within a line or frame does not affect the
accumulation logic.

When vEnd is received, the block promotes any remaining data in the four levels of mean calculation
to calculate the final output. If an accumulator counter is not at 64 when vEnd arrives, that level
normalizes by the actual value of the counter. The constants for this multiplication are stored in a
lookup table (LUT). The four accumulators share a single LUT and multiplier. The values in the LUT
are in ufix18_en17 data type so that the multiplier fits into a DSP block on an FPGA.

This method of mean calculation is accurate when the number of pixels in the frame aligns vEnd with
the final accumulator rollover. This alignment occurs at level 2 when the frame contains a multiple of
64 pixels, and fewer than 642(4096) pixels. It occurs at level 3 when the frame contains a multiple of
4096 pixels. It occurs at level 4 when the frame contains a multiple of 643 pixels. This method is also
accurate when the frame has fewer than 64 pixels, because only the first accumulator is needed.

However, when the number of pixels in the frame does not fit these conditions, the block must
normalize the final accumulation before the counter reaches 64. This normalization introduces an
error in the calculation at subsequent levels. The figure shows the normalization error introduced in
the mean calculation by image sizes under 4096 pixels. The spikes occur where an image size is just
over a multiple of 64 pixels.

 Image Statistics

1-111

For images larger than 4096 pixels, the same effect occurs at multiples of 4096 pixels, and at
multiples of 643 pixels.

Variance

The block calculates the variance of the input pixels by using this equation:

σ2 = (1
M * N ∑i = 1

M
∑

j = 1

N
xi j

2) − μ2

The mean and the mean of the squared input are calculated in parallel. The block calculates the mean
of squares using the same approximation method used to calculate the mean, as described in the
previous section.

Standard Deviation

The block calculates the square root of the variance by using a pipelined bit-set-and-check algorithm.
This algorithm computes the square root by using addition and shifts, rather than multipliers. For an
N-bit input, the result has N bits of accuracy.

This method is hardware efficient for general inputs. If your data has known characteristics that
allow for a more efficient square root implementation, you can disable the calculation in this block
and construct your own logic from HDL-supported blocks.

1 Blocks

1-112

Regions of Interest

Statistics are often calculated on small regions of interest (ROI) rather than an entire video frame.
This block performs calculations on all valid pixels between the vStart and vEnd signals in the ctrl
bus and does not track pixel location within the frame. You can use the ROI Selector block to select a
smaller region of the frame before passing the video stream to this block. For an example that selects
multiple small ROIs from a larger image and compares the statistics of each region, see “Multi-Zone
Metering”.

The Image Statistics block calculates statistics over frames up to 644 (16,777,216) pixels in size. If
you provide an image with more than 644 pixels, the block calculates the requested statistics on only
the first 16,777,216 pixels and then asserts validOut. The block ignores extra pixels until it receives
a vEnd signal.

Latency

The latency from vEnd to validOut depends on the calculations you select.

When the block receives a vEnd signal that is true, it combines the remaining data in the four levels
of mean calculation to calculate the final output. This final step takes four cycles per level, resulting
in a maximum of 16 cycles of latency between the input vEnd signal and the validOut signal. Once
the mean is available, the variance calculation takes four cycles. The square root logic requires input
word length (IWL) cycles of latency.

If a calculation is not selected, and is not needed for other selected calculations, that logic is
excluded from the generated HDL code.

The table shows the calculation logic and latency for various block configurations.

Mean Varia
nce

Std.
Devi
ation

Logic Excluded From
HDL

Latency (cycles)

✓ ✓ ✓ [4n]+4+IWL, (where n is the number of accumulator
levels required for the input size)

✓ variance and square root [4n]
 ✓ square root [4n]+4
 ✓ [4n]+4+IWL
✓ ✓ square root [4n]+4
✓ ✓ [4n]+4+IWL
 ✓ ✓ [4n]+4+IWL

Note You must have a vertical blanking interval of at least 16 cycles between the vEnd of one input
frame and the vStart of the next input frame. This period lets the block finish processing the current
frame before the new one arrives. For more information, see “Configure Blanking Intervals”.

Extended Capabilities
C/C++ Code Generation
Generate C and C++ code using Simulink® Coder™.

 Image Statistics

1-113

This block supports C/C++ code generation for Simulink accelerator and rapid accelerator modes
and for DPI component generation.

HDL Code Generation
Generate Verilog and VHDL code for FPGA and ASIC designs using HDL Coder™.

HDL Coder provides additional configuration options that affect HDL implementation and synthesized
logic.

HDL Architecture

This block has a single, default HDL architecture.

HDL Block Properties

ConstrainedOutputPi
peline

Number of registers to place at the outputs by moving existing delays
within your design. Distributed pipelining does not redistribute these
registers. The default is 0. For more details, see
“ConstrainedOutputPipeline” (HDL Coder).

InputPipeline Number of input pipeline stages to insert in the generated code.
Distributed pipelining and constrained output pipelining can move these
registers. The default is 0. For more details, see “InputPipeline” (HDL
Coder).

OutputPipeline Number of output pipeline stages to insert in the generated code.
Distributed pipelining and constrained output pipelining can move these
registers. The default is 0. For more details, see “OutputPipeline” (HDL
Coder).

See Also
2-D Mean | 2-D Standard Deviation | 2-D Variance | Frame To Pixels |
visionhdl.ImageStatistics

Topics
“Multi-Zone Metering”

Introduced in R2015a

1 Blocks

1-114

Lookup Table
Map input pixel to output pixel using custom rule
Library: Vision HDL Toolbox / Conversions

Description
The Lookup Table block provides a custom one-to-one map between an input pixel value and an
output pixel value.

Ports
This block uses a streaming pixel interface with a pixelcontrol bus for frame control signals. This
interface enables the block to operate independently of image size and format. All Vision HDL
Toolbox blocks use the same streaming interface. The block accepts and returns a scalar pixel value
and a bus that contains five control signals. The control signals indicate the validity of each pixel and
its location in the frame. To convert a frame (pixel matrix) into a serial pixel stream and control
signals, use the Frame To Pixels block. For a full description of the interface, see “Streaming Pixel
Interface”.

Input

pixel — Image pixels
scalar | vector

For single pixel streaming, specify pixel as a scalar intensity value or a row vector of Number of
components values. For multipixel streaming, specify pixel as a column vector of Number of pixels
pixel intensity values. This block does not support multipixel-multicomponent streaming.

Integer and fixed-point data types larger than 16 bits are not supported.

double and single data types are supported for simulation, but not for HDL code generation.
Data Types: uint8 | uint16 | int8 | int16 | fixed point | Boolean | double | single

ctrl — Control signals associated with pixel stream
pixelcontrol bus

The pixelcontrol bus contains five signals. The signals describe the validity of the pixel and its
location in the frame. For more information, see “Pixel Control Bus”.

For multipixel streaming, each vector of pixel values has one set of control signals. Because the
vector has only one valid signal, the pixels in the vector must be either all valid or all invalid. The
hStart and vStart signals apply to the pixel with the lowest index in the vector. The hEnd and
vEnd signals apply to the pixel with the highest index in the vector.
Data Types: bus

 Lookup Table

1-115

Output

pixel — Image pixel
scalar | vector

The dimensions of the output pixel match the dimensions of the input pixel. The block returns the
output pixel as a scalar, a row vector of Number of components values, or a column vector of
Number of pixels values.

The data type is specified by the Table data parameter.
Data Types: uint8 | uint16 | int8 | int16 | fixed point | Boolean | double | single

ctrl — Control signals associated with pixel stream
pixelcontrol bus

The pixelcontrol bus contains five signals. The signals describe the validity of the pixel and its
location in the frame. For more information, see “Pixel Control Bus”.

For multipixel streaming, each vector of pixel values has one set of control signals. Because the
vector has only one valid signal, the pixels in the vector must be either all valid or all invalid. The
hStart and vStart signals apply to the pixel with the lowest index in the vector. The hEnd and
vEnd signals apply to the pixel with the highest index in the vector.
Data Types: bus

Parameters
Table data — Map between input pixel and output pixel
uint8(0:1:255) (default) | vector

Map between input pixel and output pixel, specified as a row or column vector of any data type. The
data type of the table data determines the data type of the output pixel. This mapping determines the
one-to-one correspondence between an input pixel value and an output pixel value.

• The length of the vector must be 2WordLength, where WordLength is the size, in bits, of the input
pixel. The Lookup Table block does not perform interpolation. Every input value must have a
corresponding output value in the table.

• The smallest representable value of the input data type maps to the first element of the table, the
second smallest value maps to the second element, and so on. For example, if the input pixel has a
data type of fixdt(0,3,1), the input value 0 maps to the first element of the table, 0.5 maps to
the second element, 1 maps to the third element, and so on.

When the input pixel is a vector, the block replicates the lookup table for each element of the vector.
In that case, the tables use VectorSize×2WordLength memory locations.
Example: uint8(linspace(255,0,256))

Algorithms
Latency

The latency of the Lookup Table block is 2 cycles.

1 Blocks

1-116

Extended Capabilities
C/C++ Code Generation
Generate C and C++ code using Simulink® Coder™.

This block supports C/C++ code generation for Simulink accelerator and rapid accelerator modes
and for DPI component generation.

HDL Code Generation
Generate Verilog and VHDL code for FPGA and ASIC designs using HDL Coder™.

HDL Coder provides additional configuration options that affect HDL implementation and synthesized
logic.

HDL Architecture

This block has a single, default HDL architecture.

HDL Block Properties

ConstrainedOutputPi
peline

Number of registers to place at the outputs by moving existing delays
within your design. Distributed pipelining does not redistribute these
registers. The default is 0. For more details, see
“ConstrainedOutputPipeline” (HDL Coder).

InputPipeline Number of input pipeline stages to insert in the generated code.
Distributed pipelining and constrained output pipelining can move these
registers. The default is 0. For more details, see “InputPipeline” (HDL
Coder).

LUTRegisterResetTyp
e

The reset type of the lookup table output register. Select none to
synthesize the lookup table to a ROM when your target is an FPGA. See
also “LUTRegisterResetType” (HDL Coder).

OutputPipeline Number of output pipeline stages to insert in the generated code.
Distributed pipelining and constrained output pipelining can move these
registers. The default is 0. For more details, see “OutputPipeline” (HDL
Coder).

See Also
Blocks
Frame To Pixels

Objects
visionhdl.LookupTable

Introduced in R2015a

 Lookup Table

1-117

Measure Timing
Measure timing of pixel control bus input
Library: Vision HDL Toolbox / Utilities

Description
The Measure Timing block measures the timing parameters of a video stream. This block is for use in
Simulink simulation only and does not support HDL code generation.

The Vision HDL Toolbox streaming pixel protocol implements the timing of a video system, including
inactive intervals between frames. These inactive intervals are called blanking intervals. Many Vision
HDL Toolbox blocks require minimum blanking intervals. For more information, see “Configure
Blanking Intervals”. You can use the timing parameter measurements from this block to check that
your video stream meets these requirements. If you manipulate the control signals of your video
stream, you can use this block to verify the resulting signals.

To determine the parameters of each frame, the block measures the time steps between the control
signals on the bus.

• 1 — Active pixels per line
• 2 — Active lines per frame (count hStart pulses)
• 3 — Total pixels per line
• 4 — Total lines per frame (cycles divided by total pixels per line)
• 5 — Horizontal blanking
• 6 — Vertical blanking (cycles, minus horizontal blanking, divided by total pixels per line)

For details on the pixel control bus and the dimensions of a video frame, see “Streaming Pixel
Interface”.

Note Measurements from the first simulated frame are incorrect because some parameters require
measurements between frames. Simulate at least two frames before using the results.

1 Blocks

1-118

Ports
Input

ctrlIn — Control signals associated with pixel stream
pixelcontrol bus

The pixelcontrol bus contains five signals. The signals describe the validity of the pixel and its
location in the frame. For more information, see “Pixel Control Bus”.
Data Types: bus

Output

activePixels — Number of pixels in each line of active video frame
scalar

Number of pixels in each line of the active video frame, returned as a scalar. This value is measured
by counting valid pixels between hStart and hEnd. See marker 1 in the diagram.
Data Types: double

activeLines — Number of lines in active video frame
scalar

Number of lines in the active video frame, returned as a scalar. This value is measured by counting
the hStart pulses between vStart and vEnd. See marker 2 in the diagram.
Data Types: double

totalPixels — Number of pixels in each line, including the horizontal blanking interval
scalar

Number of pixels in each line, including the horizontal blanking interval, returned as a scalar. This
value is measured by counting the number of valid pixels between two hStart pulses. See marker 3
in the diagram.
Data Types: double

totalLines — Number of lines in the frame, including the vertical blanking interval
scalar

Number of lines in the frame, including the vertical blanking interval, returned as a scalar. This value
is measured by counting the number of valid pixels between two vStart pulses, divided by
totalPixels. See marker 4 in the diagram.
Data Types: double

horizBlank — Number of inactive pixels between lines of a frame
scalar

Number of inactive pixels between lines of a frame, returned as a scalar. This value is measured by
counting invalid cycles between hEnd and the next hStart. See marker 5 in the diagram.
Data Types: double

vertBlank — Number of inactive lines between frames
scalar

 Measure Timing

1-119

Number of inactive lines between frames, returned as a scalar. This value is measured by counting
invalid cycles between vEnd and the next vStart, subtracting horizBlank, and then dividing by
totalPixels. See marker 6 in the diagram.
Data Types: double

Extended Capabilities
C/C++ Code Generation
Generate C and C++ code using Simulink® Coder™.

This block supports C/C++ code generation for Simulink accelerator and rapid accelerator modes
and for DPI component generation.

HDL Code Generation
Generate Verilog and VHDL code for FPGA and ASIC designs using HDL Coder™.

This block can be used for simulation visibility in subsystems that generate HDL code, but is not
included in the hardware implementation.

See Also
Frame To Pixels | visionhdl.MeasureTiming

Topics
“Streaming Pixel Interface”
“Configure Blanking Intervals”

Introduced in R2016b

1 Blocks

1-120

Median Filter
2-D median filtering
Library: Vision HDL Toolbox / Analysis & Enhancement

Vision HDL Toolbox / Filtering

Description
The Median Filter block replaces each input pixel with the median value of a specified surrounding N-
by-N neighborhood. The median is less sensitive to extreme values than the mean. You can use this
block to remove salt-and-pepper noise from an image without significantly reducing the sharpness of
the image. You can specify the neighborhood size and padding values for edges of the input image.

Ports
This block uses a streaming pixel interface with a bus for frame control signals. This interface
enables the block to operate independently of image size and format. The pixel ports on this block
support single pixel streaming or multipixel streaming. Single pixel streaming accepts and returns a
single pixel value each clock cycle. Multipixel streaming accepts and returns 4 or 8 pixels per clock
cycle to support high-frame-rate or high-resolution formats. Along with the pixel, the block accepts
and returns a pixelcontrol bus that contains five control signals. The control signals indicate the
validity of each pixel and their location in the frame. For multipixel streaming, one set of control
signals applies to all four or eight pixels in the vector. To convert a frame (pixel matrix) into a serial
pixel stream and control signals, use the Frame To Pixels block. For a full description of the interface,
see “Streaming Pixel Interface”.

Input

pixel — Input pixel or multipixel vector
scalar | vector

This block supports single pixel streaming or multipixel streaming. For single pixel streaming, specify
a single input pixel as a scalar intensity value. For multipixel streaming, specify a vector of four or
eight pixel intensity values. For details of how to set up your model for multipixel streaming, see
“Filter Multipixel Video Streams”.

This block does not support multicomponent streaming. To process multicomponent streams,
replicate the block for each component. The pixelcontrol bus for all components is identical, so
you can connect a single bus to multiple replicated blocks.

double and single data types are supported for simulation, but not for HDL code generation.
Data Types: uint8 | uint16 | uint32 | int8 | int16 | int32 | fixed point | Boolean | double |
single

ctrl — Control signals associated with pixel stream
pixelcontrol bus

 Median Filter

1-121

The pixelcontrol bus contains five signals. The signals describe the validity of the pixel and its
location in the frame. For more information, see “Pixel Control Bus”.

For multipixel streaming, each vector of pixel values has one set of control signals. Because the
vector has only one valid signal, the pixels in the vector must be either all valid or all invalid. The
hStart and vStart signals apply to the pixel with the lowest index in the vector. The hEnd and
vEnd signals apply to the pixel with the highest index in the vector.
Data Types: bus

Output

pixel — Output pixel or multipixel vector
scalar | vector

This block supports single pixel streaming or multipixel streaming. When using single pixel
streaming, the block returns a single pixel as a scalar intensity value. When using multipixel
streaming, the block returns a vector of intensity values. This vector is the same size as the input
pixel vector. For details of how to set up your model for multipixel streaming, see “Filter Multipixel
Video Streams”.

The output pixel data type is the same as the data type of the input pixels.

double and single data types are supported for simulation, but not for HDL code generation.
Data Types: uint8 | uint16 | uint32 | int8 | int16 | int32 | fixed point | Boolean | double |
single

ctrl — Control signals associated with pixel stream
pixelcontrol bus

The pixelcontrol bus contains five signals. The signals describe the validity of the pixel and its
location in the frame. For more information, see “Pixel Control Bus”.

For multipixel streaming, each vector of pixel values has one set of control signals. Because the
vector has only one valid signal, the pixels in the vector must be either all valid or all invalid. The
hStart and vStart signals apply to the pixel with the lowest index in the vector. The hEnd and
vEnd signals apply to the pixel with the highest index in the vector.
Data Types: bus

Parameters
Neighborhood size — Size of image region used to compute median
3×3 (default) | 5×5 | 7×7

Select the neighborhood size, in pixels, as 3×3, 5×5, or 7×7.

You cannot use a neighborhood size of 7×7 when you use multipixel streaming and set Padding
method to None.

Padding method — Method for padding boundary of input image
Symmetric (default) | Constant | Replicate | None

Select one of these methods for padding the boundary of the input image. For more information about
these methods, see “Edge Padding”.

1 Blocks

1-122

• Constant — Interpret pixels outside the image frame as having a constant value.
• Replicate — Repeat the value of pixels at the edge of the image.
• Symmetric — Set the value of the padding pixels to mirror the edge of the image.
• None — Exclude padding logic. The block does not set the pixels outside the image frame to any

particular value. This option reduces the hardware resources used by the block and the blanking
required between frames but affects the accuracy of the output pixels at the edges of the frame.
To maintain pixel stream timing, the output frame is the same size as the input frame. However, to
avoid using pixels calculated from undefined padding values, mask off the KernelSize/2 pixels
around the edge of the frame for downstream operations. For details, see “Increase Throughput
with Padding None”.

You cannot use a neighborhood size of 7×7 when you set Padding method to None.

Padding value — Value used to pad boundary of input image
0 (default) | integer

Specify an integer to pad the boundary of the input image. The block casts this value to the same data
type as the input pixel.

Dependencies

To enable this parameter, set the Padding method parameter to Constant.

Line buffer size — Size of line buffer
2048 (default) | integer

Specify a power of two that accommodates the number of active pixels in a single horizontal line.

If you specify a value that is not a power of two, the block uses the next largest power of two. The
block allocates (N— 1) -by-Line buffer size memory locations to store the pixels used to compute the
median value. N is the dimension of the square region specified by the Neighborhood size
parameter.

Tips
• When you use a block with an internal line buffer inside an Enabled Subsystem, the enable signal

pattern must maintain the timing of the pixel stream, including the minimum blanking intervals. If
the enable pattern corrupts the timing of the pixel stream, you might see partial output frames,
corrupted pixel stream control signals, or mismatches between Simulink and HDL simulation
results. You may need to extend the blanking intervals to accommodate for cycles when the enable
is low. For more information, see “Configure Blanking Intervals”.

Algorithms
When you use multipixel streaming, the block uses a single line memory and implements
NumberOfPixels filter kernels in parallel. This increase in hardware resources is a trade off for
increasing throughput compared to single-pixel streaming.

Latency

The latency of the block is the line buffer latency plus the latency of the kernel calculation. The line
buffer latency includes edge padding by default. The latency of the padding operation depends on the

 Median Filter

1-123

size of the kernel. If edge padding is not necessary for your design, you can reduce the latency by
setting the Padding method parameter to None. When you use this option, the block latency does
not depend on your kernel size. To determine the exact latency for any configuration of the block,
measure the number of time steps between the input and output control signals.

To find the median value of each neighborhood, the kernel logic compares the pixel values to each
other. The latency of the filter kernel depends on the neighborhood size. The table shows the number
of comparisons needed to find the median value of each size of neighborhood.

Neighborhood Size Number of Comparisons Performed
3×3 11
5×5 75
7×7 230

Note When you use edge padding, use a horizontal blanking interval greater than twice the kernel
width. This interval lets the block finish processing one line before it starts processing the next one,
including adding padding pixels before and after the active pixels in the line. Standard streaming
video formats use a horizontal blanking interval of about 25% of the frame width. This interval is
much larger than the filters applied to each frame. When you disable edge padding, the horizontal
blanking interval must be at least 12 cycles and is independent of the kernel size. If you are using a
custom video format, set the horizontal blanking interval by using the Frame To Pixels block
parameters. The horizontal blanking interval is equal to Total pixels per line – Active pixels per
line or, equivalently, Front porch + Back porch. For more information, see “Configure Blanking
Intervals”.

Performance

For the Median Filter block, the comparison logic that finds the median pixel value of each
neighborhood is typically the critical path that determines the achievable clock frequency after
synthesis. As the size of a neighborhood increases, the length of this path increases.

Extended Capabilities
C/C++ Code Generation
Generate C and C++ code using Simulink® Coder™.

This block supports C/C++ code generation for Simulink accelerator and rapid accelerator modes
and for DPI component generation.

1 Blocks

1-124

HDL Code Generation
Generate Verilog and VHDL code for FPGA and ASIC designs using HDL Coder™.

HDL Coder provides additional configuration options that affect HDL implementation and synthesized
logic.

HDL Architecture

This block has a single, default HDL architecture.

HDL Block Properties

ConstrainedOutputPi
peline

Number of registers to place at the outputs by moving existing delays
within your design. Distributed pipelining does not redistribute these
registers. The default is 0. For more details, see
“ConstrainedOutputPipeline” (HDL Coder).

InputPipeline Number of input pipeline stages to insert in the generated code.
Distributed pipelining and constrained output pipelining can move these
registers. The default is 0. For more details, see “InputPipeline” (HDL
Coder).

OutputPipeline Number of output pipeline stages to insert in the generated code.
Distributed pipelining and constrained output pipelining can move these
registers. The default is 0. For more details, see “OutputPipeline” (HDL
Coder).

Restrictions

You cannot generate HDL code for this block if it is inside a Resettable Synchronous Subsystem.

See Also
Frame To Pixels | Median Filter | visionhdl.MedianFilter

Introduced in R2015a

 Median Filter

1-125

Opening
Morphological opening of binary pixel data
Library: Vision HDL Toolbox / Morphological Operations

Description
The Opening block performs morphological erosion followed by morphological dilation by using the
same neighborhood for both calculations. The block operates on a stream of binary intensity values.
You can specify a neighborhood or structuring element of up to 32-by-32 pixels.

This block uses a streaming pixel interface with a bus for frame control signals. This interface
enables the block to operate independently of image size and format. The pixel ports on this block
support single pixel streaming or multipixel streaming. Single pixel streaming accepts and returns a
single pixel value each clock cycle. Multipixel streaming accepts and returns 4 or 8 pixels per clock
cycle to support high-frame-rate or high-resolution formats. Along with the pixel, the block accepts
and returns a pixelcontrol bus that contains five control signals. The control signals indicate the
validity of each pixel and their location in the frame. For multipixel streaming, one set of control
signals applies to all four or eight pixels in the vector. To convert a frame (pixel matrix) into a serial
pixel stream and control signals, use the Frame To Pixels block. For a full description of the interface,
see “Streaming Pixel Interface”.

Ports
Input

pixel — Boolean input pixel or multipixel vector
scalar | vector

This block supports single pixel streaming or multipixel streaming. For single pixel streaming, specify
a single input pixel as a scalar Boolean value. For multipixel streaming, specify a vector of four or
eight Boolean values. For details of how to set up your model for multipixel streaming, see “Filter
Multipixel Video Streams”.
Data Types: Boolean

ctrl — Control signals associated with pixel stream
pixelcontrol bus

The pixelcontrol bus contains five signals. The signals describe the validity of the pixel and its
location in the frame. For more information, see “Pixel Control Bus”.

For multipixel streaming, each vector of pixel values has one set of control signals. Because the
vector has only one valid signal, the pixels in the vector must be either all valid or all invalid. The
hStart and vStart signals apply to the pixel with the lowest index in the vector. The hEnd and
vEnd signals apply to the pixel with the highest index in the vector.

1 Blocks

1-126

Data Types: bus

Output

pixel — Boolean output pixel or multipixel vector
scalar | vector

This block supports single pixel streaming or multipixel streaming. When using single pixel
streaming, the block returns a single pixel as a scalar Boolean value. When using multipixel
streaming, the block returns a vector of Boolean values. This vector is the same size as the input
pixel vector. For details of how to set up your model for multipixel streaming, see “Filter Multipixel
Video Streams”.
Data Types: Boolean

ctrl — Control signals associated with pixel stream
pixelcontrol bus

The pixelcontrol bus contains five signals. The signals describe the validity of the pixel and its
location in the frame. For more information, see “Pixel Control Bus”.

For multipixel streaming, each vector of pixel values has one set of control signals. Because the
vector has only one valid signal, the pixels in the vector must be either all valid or all invalid. The
hStart and vStart signals apply to the pixel with the lowest index in the vector. The hEnd and
vEnd signals apply to the pixel with the highest index in the vector.
Data Types: bus

Parameters
Neighborhood — Pixel neighborhood
[0,1,0; 1,1,1; 0,1,0] (default) | vector or matrix of 1s and 0s

Pixel neighborhood, specified as a vector or matrix of binary values.

The block supports neighborhoods of up to 32-by-32 pixels. To use a structuring element, specify
Neighborhood as getnhood(strel(shape)).

When you use multipixel vector input, the neighborhood must be at least two pixels in each
dimension.

Line buffer size — Size of line memory buffer
2048 (default) | positive integer

Specify a power of two that accommodates the number of active pixels in a single horizontal line.

If you specify a value that is not a power of two, the block uses the next largest power of two. The
block allocates (neighborhood lines – 1)-by-Line buffer size memory locations to store the pixels.

Padding method — Method for padding
Constant (default) | None

Select one of these methods for padding the boundary of the input image. For more information about
these methods, see “Edge Padding”.

 Opening

1-127

• Constant — The block pads the image with zeros for the dilation operation and with ones for the
erosion operation. These values prevent opening at the boundaries of the active frame.

• None — Exclude padding logic. The block does not set the pixels outside the image frame to any
particular value. This option reduces the hardware resources used by the block and the blanking
required between frames but affects the accuracy of the output pixels at the edges of the frame.
To maintain pixel stream timing, the output frame is the same size as the input frame. However, to
avoid using pixels calculated from undefined padding values, mask off the KernelSize/2 pixels
around the edge of the frame for downstream operations. For details, see “Increase Throughput
with Padding None”.

Tips
• When you use a block with an internal line buffer inside an Enabled Subsystem, the enable signal

pattern must maintain the timing of the pixel stream, including the minimum blanking intervals. If
the enable pattern corrupts the timing of the pixel stream, you might see partial output frames,
corrupted pixel stream control signals, or mismatches between Simulink and HDL simulation
results. You may need to extend the blanking intervals to accommodate for cycles when the enable
is low. For more information, see “Configure Blanking Intervals”.

Algorithms
Latency

The total latency of the block is the line buffer latency plus the latency of the kernel calculation.
Morphological opening is a compound operation. Therefore, this block contains a second line buffer
between the erosion kernel and the dilation kernel. To determine the exact latency for any
configuration of the block, monitor the number of time steps between the input control signals and
the output control signals.

The latency of the line memory includes edge padding. The latency of the kernel depends on the
neighborhood size.

Note When you use edge padding, use a horizontal blanking interval greater than twice the kernel
width. This interval lets the block finish processing one line before it starts processing the next one,
including adding padding pixels before and after the active pixels in the line. Standard streaming
video formats use a horizontal blanking interval of about 25% of the frame width. This interval is
much larger than the filters applied to each frame. When you disable edge padding, the horizontal
blanking interval must be at least 12 cycles and is independent of the kernel size. If you are using a

1 Blocks

1-128

custom video format, set the horizontal blanking interval by using the Frame To Pixels block
parameters. The horizontal blanking interval is equal to Total pixels per line – Active pixels per
line or, equivalently, Front porch + Back porch. For more information, see “Configure Blanking
Intervals”.

Extended Capabilities
C/C++ Code Generation
Generate C and C++ code using Simulink® Coder™.

This block supports C/C++ code generation for Simulink accelerator and rapid accelerator modes
and for DPI component generation.

HDL Code Generation
Generate Verilog and VHDL code for FPGA and ASIC designs using HDL Coder™.

HDL Coder provides additional configuration options that affect HDL implementation and synthesized
logic.

HDL Architecture

This block has a single, default HDL architecture.

HDL Block Properties

ConstrainedOutputPi
peline

Number of registers to place at the outputs by moving existing delays
within your design. Distributed pipelining does not redistribute these
registers. The default is 0. For more details, see
“ConstrainedOutputPipeline” (HDL Coder).

InputPipeline Number of input pipeline stages to insert in the generated code.
Distributed pipelining and constrained output pipelining can move these
registers. The default is 0. For more details, see “InputPipeline” (HDL
Coder).

OutputPipeline Number of output pipeline stages to insert in the generated code.
Distributed pipelining and constrained output pipelining can move these
registers. The default is 0. For more details, see “OutputPipeline” (HDL
Coder).

Restrictions

You cannot generate HDL code for this block if it is inside a Resettable Synchronous Subsystem.

See Also
Closing | Dilation | Erosion | Frame To Pixels | visionhdl.Opening

Topics
“Types of Morphological Operations” (Image Processing Toolbox)
“Structuring Elements” (Image Processing Toolbox)

Introduced in R2015a

 Opening

1-129

Pixel Control Bus Creator
Create control signal bus for use with Vision HDL Toolbox blocks
Library: Vision HDL Toolbox / Utilities

Description
The Pixel Control Bus Creator block creates a pixelcontrol bus. See “Pixel Control Bus”.

The block is an implementation of the Simulink Bus Creator block. See Bus Creator for more
information.

Troubleshooting When you generate HDL code from a Simulink model that uses the
pixelcontrol bus, you might encounter this error.

Cannot resolve variable 'pixelcontrol'

To avoid this issue, use the pixelcontrolbus function to create an instance of the bus type in the
base workspace. Then try generating HDL code again.

The Vision HDL Toolbox model template includes this line in the InitFcn callback.

evalin('base','pixelcontrolbus')

Ports
Input

hStart — First pixel in a horizontal line of a frame
scalar

First pixel in a horizontal line of a frame, specified as a Boolean scalar.
Data Types: Boolean

hEnd — Last pixel in a horizontal line of a frame
scalar

Last pixel in a horizontal line of a frame, specified as a Boolean scalar.
Data Types: Boolean

vStart — First pixel in the first (top) line of a frame
scalar

1 Blocks

1-130

First pixel in the first (top) line of a frame, specified as a Boolean scalar.
Data Types: Boolean

vEnd — Last pixel in the last (bottom) line of a frame
scalar

Last pixel in the last (bottom) line of a frame, specified as a Boolean scalar.
Data Types: Boolean

valid — Valid pixel indicator
scalar

Valid pixel indicator, specified as a Boolean scalar.
Data Types: Boolean

Output

ctrl — Control signals accompanying pixel stream
pixelcontrol bus

The pixelcontrol bus contains five signals. The signals describe the validity of the pixel and its
location in the frame. For more information, see “Pixel Control Bus”.
Data Types: bus

Extended Capabilities
C/C++ Code Generation
Generate C and C++ code using Simulink® Coder™.

This block supports C/C++ code generation for Simulink accelerator and rapid accelerator modes
and for DPI component generation.

HDL Code Generation
Generate Verilog and VHDL code for FPGA and ASIC designs using HDL Coder™.

HDL Coder provides additional configuration options that affect HDL implementation and synthesized
logic.

To learn more about using buses for HDL code generation, see “Buses” (HDL Coder) and “Use Bus
Signals to Improve Readability of Model and Generate HDL Code” (HDL Coder).

HDL Architecture

This block has a single, default HDL architecture.

HDL Block Properties

ConstrainedOutputPi
peline

Number of registers to place at the outputs by moving existing delays
within your design. Distributed pipelining does not redistribute these
registers. The default is 0. For more details, see
“ConstrainedOutputPipeline” (HDL Coder).

 Pixel Control Bus Creator

1-131

InputPipeline Number of input pipeline stages to insert in the generated code.
Distributed pipelining and constrained output pipelining can move these
registers. The default is 0. For more details, see “InputPipeline” (HDL
Coder).

OutputPipeline Number of output pipeline stages to insert in the generated code.
Distributed pipelining and constrained output pipelining can move these
registers. The default is 0. For more details, see “OutputPipeline” (HDL
Coder).

See Also
Frame To Pixels | Pixel Control Bus Selector | Pixels To Frame

Topics
“Streaming Pixel Interface”

Introduced in R2015a

1 Blocks

1-132

Pixel Control Bus Selector
Select signals from control signal bus used by Vision HDL Toolbox blocks
Library: Vision HDL Toolbox / Utilities

Description
The Pixel Control Bus Selector block selects signals from the pixelcontrol bus. See “Pixel Control
Bus”.

The block is an implementation of the Simulink Bus Selector block. See Bus Selector for more
information.

Ports
Input

Port_1 — Control signals accompanying pixel stream
pixelcontrol bus

The pixelcontrol bus contains five signals. The signals describe the validity of the pixel and its
location in the frame. For more information, see “Pixel Control Bus”.
Data Types: bus

Output

Port_1 — First pixel in a horizontal line of a frame
scalar

First pixel in a horizontal line of a frame, returned as a Boolean scalar. This port returns the hStart
signal from the input bus.
Data Types: Boolean

Port_2 — Last pixel in a horizontal line of a frame
scalar

Last pixel in a horizontal line of a frame, returned as a Boolean scalar. This port returns the hEnd
signal from the input bus.
Data Types: Boolean

Port_3 — First pixel in the first (top) line of a frame
scalar

 Pixel Control Bus Selector

1-133

First pixel in the first (top) line of a frame, returned as a Boolean scalar. This port returns the
vStart signal from the input bus.
Data Types: Boolean

Port_4 — Last pixel in the last (bottom) line of a frame
scalar

Last pixel in the last (bottom) line of a frame, returned as a Boolean scalar. This port returns the
vEnd signal from the input bus.
Data Types: Boolean

Port_5 — Valid pixel indicator
scalar

Valid pixel indicator, returned as a Boolean scalar. This port returns the valid signal from the input
bus.
Data Types: Boolean

Extended Capabilities
C/C++ Code Generation
Generate C and C++ code using Simulink® Coder™.

This block supports C/C++ code generation for Simulink accelerator and rapid accelerator modes
and for DPI component generation.

HDL Code Generation
Generate Verilog and VHDL code for FPGA and ASIC designs using HDL Coder™.

HDL Coder provides additional configuration options that affect HDL implementation and synthesized
logic.

To learn more about using buses for HDL code generation, see “Buses” (HDL Coder) and “Use Bus
Signals to Improve Readability of Model and Generate HDL Code” (HDL Coder).

HDL Architecture

This block has a single, default HDL architecture.

HDL Block Properties

ConstrainedOutputPi
peline

Number of registers to place at the outputs by moving existing delays
within your design. Distributed pipelining does not redistribute these
registers. The default is 0. For more details, see
“ConstrainedOutputPipeline” (HDL Coder).

InputPipeline Number of input pipeline stages to insert in the generated code.
Distributed pipelining and constrained output pipelining can move these
registers. The default is 0. For more details, see “InputPipeline” (HDL
Coder).

1 Blocks

1-134

OutputPipeline Number of output pipeline stages to insert in the generated code.
Distributed pipelining and constrained output pipelining can move these
registers. The default is 0. For more details, see “OutputPipeline” (HDL
Coder).

See Also
Frame To Pixels | Pixel Control Bus Creator | Pixels To Frame

Topics
“Streaming Pixel Interface”

Introduced in R2015a

 Pixel Control Bus Selector

1-135

Pixels To Frame
Convert pixel stream to frame-based video
Library: Vision HDL Toolbox / I/O Interfaces

Description
The Pixels To Frame block converts a color or grayscale pixel stream and control signals to frame-
based video. The control signal bus indicates the validity of each pixel and its location within the
frame. The pixel stream format can include padding pixels around the active frame. You can configure
the frame and padding dimensions by selecting a common video format or by specifying custom
dimensions. The pixel input can support scalar streaming, or multipixel streaming. Multipixel
streaming accepts 4 or 8 pixels each clock cycle to support high-rate or high-resolution formats. For
details of the pixel stream format, see “Streaming Pixel Interface”.

This block does not support HDL code generation. However, you can use this block to convert the
output of a separate subsystem, targeted for HDL code generation, back to frames.

If your model converts frames to a pixel stream and later converts the stream back to frames, specify
the same video format for the Frame To Pixels block and the Pixels To Frame block.

Ports
Input

pixel — Image pixel or multipixel vector
scalar | vector

For scalar pixel streams, pixel is a single image pixel specified as a scalar or a vector of 1-by-
Number of components values. For multipixel streams, pixel is a matrix of Number of pixels-by-
Number of components pixel intensity values.
Data Types: single | double | int | uint | Boolean | fixed point

ctrl — Control signals associated with pixel stream
pixelcontrol bus

The pixelcontrol bus contains five signals. The signals describe the validity of the pixel and its
location in the frame. For more information, see “Pixel Control Bus”.

For multipixel streaming, each vector of pixel values has one set of control signals. Because the
vector has only one valid signal, the pixels in the vector must be either all valid or all invalid. The
hStart and vStart signals apply to the pixel with the lowest index in the vector. The hEnd and
vEnd signals apply to the pixel with the highest index in the vector.
Data Types: bus

1 Blocks

1-136

Output

frame — Full image frame
array

Full image frame, returned as an Active pixels per line-by-Active video lines-by-N array. The first
two array dimensions are the height and width of the active image specified by the Video format
parameter. N is the Number of components used to express a single pixel. The output data type is
the same as the data type of the pixel port.

validOut — Indicates when output frame is ready
scalar

This signal is 1 (true) when the block has successfully recompiled an output frame from the input
stream.
Data Types: Boolean

Parameters
Number of components — Number of values used to represent each pixel
1 (default) | 3 | 4

Number of values used to represent each pixel. Each pixel can have 1, 3, or 4 components. Set this
parameter to 1 for grayscale video. Set this parameter to 3 for color video, for example, {R,G,B} or
{Y,Cb,Cr}. Set this parameter to 4 to use color with an alpha channel for transparency.

To process multicomponent streams for blocks that do not support multicomponent input, replicate
the block for each component. The pixelcontrol bus for all components is identical, so you can
connect the ctrl output of the Frame To Pixels block to each replicated block.

Number of pixels — Number of pixels streamed per time step
1 (default) | 4 | 8

Number of pixels transferred on the streaming interface for each time step, specified as 1, 4, or 8. To
enable multipixel streaming and increase throughput for high-resolution or high-frame-rate video, set
this parameter to 4 or 8. Multipixel streaming processes more pixels with the same clock frequency
as a single-pixel streaming interface.

Video Resolution Clock Frequency Required for
Single-Pixel Streaming at 60
fps

Clock Frequency Required for
Multipixel Streaming at 60
fps (4 pixels)

1080p 150 MHz 37.5 MHz
4k UHD 600 MHz 150 MHz
8k UHD 1200 MHz 300 MHz

Video format — Dimensions of active regions in a video frame
1080p (default) | 240p | 480p | 480pH | 576p | 720p | 768p | 1024p | 1200p | 2KCinema | 4KUHDTV |
8KUHDTV | Custom

Dimensions of active regions in a video frame. To select a predefined format, use the Video format
pull-down menu. The active frame dimensions are set as shown in the table. For a custom format,
select Custom, then specify the active frame dimensions as integers.

 Pixels To Frame

1-137

Video Format Active Pixels Per
Line

Active Video Lines

240p 320 240
480p 640 480
480pH 720 480
576p 720 576
720p 1280 720
768p 1024 768
1024p 1280 1024
1080p (default) 1920 1080
1200p 1600 1200
2KCinema 2048 1080
4KUHDTV 3840 2160
8KUHDTV 7680 4320
Custom User-

defined
User-
defined

Extended Capabilities
C/C++ Code Generation
Generate C and C++ code using Simulink® Coder™.

This block supports C/C++ code generation for Simulink Accelerator and Rapid Accelerator modes.

See Also
Blocks
Frame To Pixels

Objects
visionhdl.PixelsToFrame

Topics
“Streaming Pixel Interface”

Introduced in R2015a

1 Blocks

1-138

Pixel Stream FIFO
Buffer input stream to create image lines that have contiguous valid pixels
Library: Vision HDL Toolbox / Utilities

Description
The Pixel Stream FIFO block stores incoming valid pixels and accompanying control signals and
returns the same pixel stream without gaps between the valid pixels of each line. The block preserves
the total line size and total frame size of the video stream, including invalid cycles.

Use the Pixel Stream FIFO block to buffer video sources. The waveform shows a direct memory
access (DMA) video source, where pixels are read in bursts, and a Camera Link® video source, where
pixels are valid every second clock cycle. To create contiguous video lines, a Pixel Stream FIFO block
buffers the input pixels and control signals of each source.

Ports
This block uses a streaming pixel interface with a bus for frame control signals. This interface
enables the block to operate independently of image size and format. The pixel ports on this block
support single pixel streaming or multipixel streaming. Single pixel streaming accepts and returns a
single pixel value each clock cycle. Multipixel streaming accepts and returns 4 or 8 pixels per clock
cycle to support high-frame-rate or high-resolution formats. Along with the pixel, the block accepts
and returns a pixelcontrol bus that contains five control signals. The control signals indicate the
validity of each pixel and their location in the frame. For multipixel streaming, one set of control
signals applies to all four or eight pixels in the vector. To convert a frame (pixel matrix) into a serial
pixel stream and control signals, use the Frame To Pixels block. For a full description of the interface,
see “Streaming Pixel Interface”.

This block also supports multipixel-multicomponent streams, where the pixel input is a matrix of M-
by-N values, where M is number of pixels and N is number of components. These values correspond
to the Number of pixels and Number of components parameters of the Frame To Pixels block.

Input

pixel — Input pixel stream
scalar | vector | matrix

 Pixel Stream FIFO

1-139

For scalar pixel streams, specify pixel as a scalar or a vector of 1-by-Number of components
values. For multipixel streams, specify pixel as a matrix of Number of pixels-by-Number of
components pixel intensity values.

double and single data types are supported for simulation, but not for HDL code generation.
Data Types: fixed point | int8 | int16 | int32 | uint8 | uint16 | uint32 | Boolean | double |
single

ctrl — Control signals associated with pixel stream
pixelcontrol bus

The pixelcontrol bus contains five signals. The signals describe the validity of the pixel and its
location in the frame. For more information, see “Pixel Control Bus”.

For multipixel streaming, each vector of pixel values has one set of control signals. Because the
vector has only one valid signal, the pixels in the vector must be either all valid or all invalid. The
hStart and vStart signals apply to the pixel with the lowest index in the vector. The hEnd and
vEnd signals apply to the pixel with the highest index in the vector.
Data Types: bus

Output

pixel — Pixel stream
scalar | vector | matrix

Each line of the output stream has contiguous valid pixels. The dimensions and data type of the
output pixel stream match those of the input pixel stream. The block returns the output pixel stream
as a scalar, a vector of 1-by-Number of components values, or a matrix of Number of pixels-by-
Number of components values.

ctrl — Control signals accompanying pixel stream
pixelcontrol bus

Control signals accompanying pixel stream, returned as a pixelcontrol bus containing five signals.
The signals indicate the validity of the pixel and its location in the frame. For more information on the
signal protocol, see “Pixel Control Bus”.

The Pixel Stream FIFO block returns each line of pixels with the ctrl.valid signal continuously true
between ctrl.hStart and ctrl.hEnd. The block buffers the entire input line before it returns the
modified line.
Data Types: bus

Parameters
Line buffer size — Size of line memory buffer
2048 (default) | positive integer

Specify a power of two that accommodates the number of active pixels in a single horizontal line. If
you specify a value that is not a power of two, the block uses the next largest power of two.

1 Blocks

1-140

Algorithms
The Pixel Stream FIFO block contains a memory controller, read and write counters, and two RAMs.
One RAM stores the incoming control signals, and the other stores the incoming pixel stream. The
block stores valid pixels and their accompanying control signals for each line, as determined by the
input ctrl.hStart and ctrl.hEnd signals. The buffering removes any bursty behavior of the input
stream. Once a full line of valid pixels is stored, the block returns the new continuous version of the
line.

When the input pixel is a vector or a matrix, the block replicates the Pixel RAM for each element. The
diagram shows three Pixel RAMs, to represent a three-component pixel stream. For multipixel
streaming, the block adjusts the line buffer size to store 1/Number of pixels pixels. For instance,
with a 4-by-3 input stream, each buffer stores ¼ of the pixels for a line, so there are 12 Pixel RAMs,
each with 2m-2 locations.

Extended Capabilities
C/C++ Code Generation
Generate C and C++ code using Simulink® Coder™.

This block supports C/C++ code generation for Simulink accelerator and rapid accelerator modes
and for DPI component generation.

HDL Code Generation
Generate Verilog and VHDL code for FPGA and ASIC designs using HDL Coder™.

HDL Coder provides additional configuration options that affect HDL implementation and synthesized
logic.

 Pixel Stream FIFO

1-141

HDL Architecture

This block has a single, default HDL architecture.

HDL Block Properties

ConstrainedOutputPi
peline

Number of registers to place at the outputs by moving existing delays
within your design. Distributed pipelining does not redistribute these
registers. The default is 0. For more details, see
“ConstrainedOutputPipeline” (HDL Coder).

InputPipeline Number of input pipeline stages to insert in the generated code.
Distributed pipelining and constrained output pipelining can move these
registers. The default is 0. For more details, see “InputPipeline” (HDL
Coder).

OutputPipeline Number of output pipeline stages to insert in the generated code.
Distributed pipelining and constrained output pipelining can move these
registers. The default is 0. For more details, see “OutputPipeline” (HDL
Coder).

Restrictions

You cannot generate HDL for this block inside an Enabled Subsystem, Resettable Synchronous
Subsystem, or a Triggered Subsystem.

See Also
Blocks
Frame To Pixels | Line Buffer

Introduced in R2018a

1 Blocks

1-142

ROI Selector
Select a region of interest (ROI) from pixel stream
Library: Vision HDL Toolbox / Utilities

Description
The ROI Selector block selects a portion of the active frame from a video stream. The size of the
inactive frame remains the same. The output control signals indicate a new active region of the
frame. You can use this block with a scalar, multipixel, or multipixel-multicomponent pixel stream.
This diagram shows the inactive pixel regions in blue and the requested output region outlined in
orange.

You can specify a fixed size and location for the ROI, or you can select the region location dynamically
by using an input port. You can select more than one region. Define each region by specifying its
upper-left corner coordinates and dimensions. By default, the block returns one set of pixels and
control signals for each region you specify. The block sets the inactive pixels in the output frame to
zero.

Regions are independent from each other, so they can overlap. If you specify a region that includes
the edge of the active frame, the block returns only the active portion of the region. This diagram
shows the output frames for three requested regions. The second output region does not include the
inactive area above the image.

 ROI Selector

1-143

The block also provides a mode for vertical reuse. In this mode, you must specify regions that have no
vertical overlap and are aligned in columns. Each column of regions shares one output pixel stream.
The control signals define each region in the stream. This arrangement enables parallel processing of
each column, and the reuse of downstream processing logic for each region in a column. To use this
mode, select the Reuse output ports for vertically aligned regions parameter. Use the
visionhdlframetoregions function to divide a frame into tiled regions for vertical reuse.

Ports
This image shows the additional ports on the block when you configure three regions of interest from
input ports.

This block uses a streaming pixel interface with a bus for frame control signals. This interface
enables the block to operate independently of image size and format. The pixel ports on this block
support single pixel streaming or multipixel streaming. Single pixel streaming accepts and returns a
single pixel value each clock cycle. Multipixel streaming accepts and returns 4 or 8 pixels per clock
cycle to support high-frame-rate or high-resolution formats. Along with the pixel, the block accepts

1 Blocks

1-144

and returns a pixelcontrol bus that contains five control signals. The control signals indicate the
validity of each pixel and their location in the frame. For multipixel streaming, one set of control
signals applies to all four or eight pixels in the vector. To convert a frame (pixel matrix) into a serial
pixel stream and control signals, use the Frame To Pixels block. For a full description of the interface,
see “Streaming Pixel Interface”.

This block also supports multipixel-multicomponent streams, where the pixel input is a matrix of M-
by-N values, where M is number of pixels and N is number of components. These values correspond
to the Number of pixels and Number of components parameters of the Frame To Pixels block.

Input

pixel — Input pixel stream
scalar | vector | matrix

For scalar pixel streams, specify pixel as a scalar or a vector of 1-by-Number of components
values. For multipixel streams, specify pixel as a matrix of Number of pixels-by-Number of
components pixel intensity values.

double and single data types are supported for simulation, but not for HDL code generation.
Data Types: fixed point | int8 | int16 | int32 | uint8 | uint16 | uint32 | Boolean | double |
single

ctrl — Control signals associated with pixel stream
pixelcontrol bus

The pixelcontrol bus contains five signals. The signals describe the validity of the pixel and its
location in the frame. For more information, see “Pixel Control Bus”.

For multipixel streaming, each vector of pixel values has one set of control signals. Because the
vector has only one valid signal, the pixels in the vector must be either all valid or all invalid. The
hStart and vStart signals apply to the pixel with the lowest index in the vector. The hEnd and
vEnd signals apply to the pixel with the highest index in the vector.
Data Types: bus

region1,...,regionR — Region of interest
four-element row vector

Region of interest, specified as a row vector of four positive integers that define the coordinates of
the top-left corner and dimensions of each desired output frame. The vector must have the form
[hPos vPos hSize vSize]. The block has R region ports, where R is the Number of regions
parameter value.

For multipixel streaming the regions must meet these conditions, where M is Number of pixels.

• mod(hPos, M) = 1 — For example, if your pixel stream has four pixels per cycle, 129 is a valid
value of hPos (mod(129,4) = 1), while 128 is invalid (mod(128,4) = 0).

• mod(hSize, M) = 0 — For example, if your pixel stream has four pixels per cycle, 120 is a valid
hSize (mod(120,4) = 0), while 118 is invalid (mod(118,4) = 2).

Dependencies

To enable this port, clear the Reuse output ports for vertically aligned regions parameter and set
the Regions source parameter to Input port.

 ROI Selector

1-145

Data Types: int8 | int16 | int32 | int64 | uint8 | uint16 | uint32 | uint64

Output

pixel1,...,pixelR — Output pixel
scalar | vector | matrix

Output pixel, returned as a scalar or multipixel stream. The output dimensions and data type match
those of the input pixel port. By default, the block has R output pixel ports, where R is the Number
of regions parameter, or the number of rows in the Regions parameter matrix.

When you select Reuse output ports for vertically aligned regions, the block has one output
pixel port for each column of vertically-aligned regions.

ctrl1,...,ctrlR — Control signals
pixelcontrol bus

Control signals, returned as a pixelcontrol bus that contains five signals. By default, the block has
R output ctrl ports, where R is the Number of regions parameter, or the number of rows in the
Regions parameter matrix.

When you select Reuse output ports for vertically aligned regions, the block has one output ctrl
port for each column of aligned regions.
Data Types: bus

Parameters
Reuse output ports for vertically aligned regions — Option to return one pixel
stream for each column of regions
off (default) | on

When you select this parameter, you must specify regions that have no vertical overlap and that are
aligned in columns. The block has one output pixel stream for each column of regions. This
arrangement enables parallel processing of each column, and the reuse of downstream processing
logic for each region in a column. Use the visionhdlframetoregions function to divide a frame
into tiled regions for vertical reuse.

Dependencies

To enable this parameter, set the Regions source parameter to Property.

Regions source — Location of output region definitions
Property (default) | Input port

Specify the location of the output region definitions. You can set Regions source to one of these
values:

• Property — Specify the regions by using the Regions parameter.
• Input port — Specify the regions by using input ports. Each input port corresponds to one

region. The block samples the region input ports when vStart is true in the input control bus.

Dependencies

To enable this parameter, clear the Reuse output ports for vertically aligned regions parameter.

1 Blocks

1-146

Regions — Rectangular ROIs to select from input frame
R-by-4 matrix

Specify rectangular ROIs to select from the input frame as an R-by-4 matrix.

R is the number of regions. The four elements that define each region are the top-left starting
coordinates and the dimensions of the region and must be of the form [hPos vPos hSize vSize].
The coordinates count from the upper-left corner of the active frame, defined as [1,1]. hSize must be
greater than 1.

For multipixel streaming the regions must meet these conditions, where M is Number of pixels.

• mod(hPos, M) = 1 — For example, if your pixel stream has four pixels per cycle, 129 is a valid
value of hPos (mod(129,4) = 1), while 128 is invalid (mod(128,4) = 0).

• mod(hSize, M) = 0 — For example, if your pixel stream has four pixels per cycle, 120 is a valid
hSize (mod(120,4) = 0), while 118 is invalid (mod(118,4) = 2).

When you clear the Reuse output ports for vertically aligned regions parameter, the regions can
overlap, and R must not be greater than 16.

When you select Reuse output ports for vertically aligned regions, the regions in this matrix
must have no vertical overlap and be aligned in columns. This diagram shows two examples of invalid
regions outlined with a blue dashed line. The region on the left overlaps another region vertically. The
two regions at the bottom do not align with the other regions in their columns. The regions do not
have to cover the entire frame. Pixels outside of the tiled regions are marked as inactive pixels. The
number of columns must not be greater than 16.

Dependencies

To enable this parameter, set the Regions source parameter to Property.

Number of regions — Number of region input ports
integer in the range [1, 16]

Specify the number of region input ports as an integer in the range [1, 16].

 ROI Selector

1-147

Dependencies

To enable this parameter, set the Regions source parameter to Input port.

Algorithms
The generated HDL code for the ROI Selector block uses two 32-bit counters. The block does not use
additional counters for additional regions.

Latency

The block has a latency of three cycles.

Extended Capabilities
C/C++ Code Generation
Generate C and C++ code using Simulink® Coder™.

This block supports C/C++ code generation for Simulink accelerator and rapid accelerator modes
and for DPI component generation.

HDL Code Generation
Generate Verilog and VHDL code for FPGA and ASIC designs using HDL Coder™.

HDL Coder provides additional configuration options that affect HDL implementation and synthesized
logic.
HDL Architecture

This block has a single, default HDL architecture.
HDL Block Properties

ConstrainedOutputPi
peline

Number of registers to place at the outputs by moving existing delays
within your design. Distributed pipelining does not redistribute these
registers. The default is 0. For more details, see
“ConstrainedOutputPipeline” (HDL Coder).

InputPipeline Number of input pipeline stages to insert in the generated code.
Distributed pipelining and constrained output pipelining can move these
registers. The default is 0. For more details, see “InputPipeline” (HDL
Coder).

OutputPipeline Number of output pipeline stages to insert in the generated code.
Distributed pipelining and constrained output pipelining can move these
registers. The default is 0. For more details, see “OutputPipeline” (HDL
Coder).

See Also
Blocks
Frame To Pixels

Objects
visionhdl.ROISelector

1 Blocks

1-148

Functions
visionhdlframetoregions

Topics
“Lane Detection”

Introduced in R2016a

 ROI Selector

1-149

Pixel Stream Aligner
Align two streams of pixel data
Library: Vision HDL Toolbox / Utilities

Description
The Pixel Stream Aligner block synchronizes two pixel streams by delaying one stream to match the
timing of a reference stream. Many Vision HDL Toolbox algorithms delay the pixel stream, and the
amount of delay can change as you adjust algorithm parameters. You can use this block to align
streams for overlaying, comparing, or combining two streams such as in a Gaussian blur operation.
Connect the delayed stream to the refPixel and refCtrl input ports, and the earlier stream to the
pixel and ctrl input ports.

This waveform diagram shows the input streams, pixelIn and refPixelIn, and their associated
control signals. The reference input frame starts later than the pixelIn frame. The output signals
show that the block delays pixelIn to match the reference stream, and that both output streams
share control signals. The waveform shows the short latency between the input refCtrl and the
output refCtrl. In this simulation, to accommodate the delay of four lines between the input
streams, the Maximum number of lines parameter must be set to at least 4.

1 Blocks

1-150

Ports
Input

This block uses a streaming pixel interface with a bus for frame control signals. This interface
enables the block to operate independently of image size and format. The pixel ports on this block
support single pixel streaming or multipixel streaming. Single pixel streaming accepts and returns a
single pixel value each clock cycle. Multipixel streaming accepts and returns 4 or 8 pixels per clock
cycle to support high-frame-rate or high-resolution formats. Along with the pixel, the block accepts
and returns a pixelcontrol bus that contains five control signals. The control signals indicate the
validity of each pixel and their location in the frame. For multipixel streaming, one set of control
signals applies to all four or eight pixels in the vector. To convert a frame (pixel matrix) into a serial
pixel stream and control signals, use the Frame To Pixels block. For a full description of the interface,
see “Streaming Pixel Interface”.

This block also supports multipixel-multicomponent streams, where the pixel input is a matrix of M-
by-N values, where M is number of pixels and N is number of components. These values correspond
to the Number of pixels and Number of components parameters of the Frame To Pixels block.

pixel — Input pixel stream
scalar | vector | matrix

For scalar pixel streams, specify pixel as a scalar or a vector of 1-by-Number of components
values. For multipixel streams, specify pixel as a matrix of Number of pixels-by-Number of
components pixel intensity values.

Because the block delays this pixel stream to match the control signals of the reference stream,
refPixel, pixel must be the earlier of the two streams.

double and single data types are supported for simulation, but not for HDL code generation.
Data Types: fixed point | int8 | int16 | int32 | uint8 | uint16 | uint32 | Boolean | double |
single

ctrl — Control signals associated with pixel stream
pixelcontrol bus

The pixelcontrol bus contains five signals. The signals describe the validity of the pixel and its
location in the frame. For more information, see “Pixel Control Bus”.

For multipixel streaming, each vector of pixel values has one set of control signals. Because the
vector has only one valid signal, the pixels in the vector must be either all valid or all invalid. The
hStart and vStart signals apply to the pixel with the lowest index in the vector. The hEnd and
vEnd signals apply to the pixel with the highest index in the vector.
Data Types: bus

refPixel — Reference pixel stream
scalar | vector

Specify refPixel as a scalar, a vector of 1-by-Number of components values, or a matrix of Number
of pixels-by-Number of components pixel intensity values.

The allowed dimensions for refPixel depend on the dimensions of the input pixel stream. The
Number of pixels must be the same.

 Pixel Stream Aligner

1-151

Input pixel Dimensions Allowed refPixel Dimensions
1-by-N 1-by-1, 1-by-3, or 1-by-4
4-by-N 4-by-1, 4-by-3, or 4-by-4
8-by-N 8-by-1, 8-by-3, or 8-by-4

Because the block delays the pixel input stream to match the reference control signals, refPixel
must be the later of the two streams. The reference data and its control signals pass through the
block with a small delay.

double and single data types are supported for simulation, but not for HDL code generation.
Data Types: fixed point | int8 | int16 | int32 | uint8 | uint16 | uint32 | Boolean | double |
single

refCtrl — Reference pixel stream control signals
pixelcontrol bus

The pixelcontrol bus contains five signals. The signals describe the validity of the pixel and its
location in the frame. For more information, see “Pixel Control Bus”.

For multipixel streaming, each vector of pixel values has one set of control signals. Because the
vector has only one valid signal, the pixels in the vector must be either all valid or all invalid. The
hStart and vStart signals apply to the pixel with the lowest index in the vector. The hEnd and
vEnd signals apply to the pixel with the highest index in the vector.

The block uses these control signals for the aligned output stream.
Data Types: bus

Output

pixel — Aligned pixel stream
scalar | vector | matrix

The timing of the output pixel stream matches the timing of the output refPixel stream. The
dimensions and data type of the output pixel stream match those of the input pixel stream.

refPixel — Reference pixel stream
scalar | vector | matrix

The dimensions and data type of the output refPixel stream match those of the input refPixel
stream. The block passes this stream through the block unchanged.

refCtrl — Reference control signals
pixelcontrol bus

The block passes the input refCtrl signals through the block with a small delay.

Parameters
Line buffer size — Size of the line memory buffer
2048 (default) | positive integer

Choose a power of two that accommodates the number of active pixels in a horizontal line. If you
specify a value that is not a power of two, the block uses the next largest power of two. The block

1 Blocks

1-152

implements a circular buffer of 2m pixels, where m is Maximum number of lines + log2(Line buffer
size).

Maximum number of lines — Buffer depth that accommodates the timing offset between
input streams
10 (default) | positive integer

The block implements a circular buffer of 2m pixels, where m is Maximum number of lines +
log2(Line buffer size), and a line address buffer of Maximum number of lines locations. The
circular memory stores the earlier input lines until the reference control signals arrive. The line
address buffer stores the address of the start of each line. When the reference control signals arrive,
the block uses the stored address to read and send the delayed line. This parameter must
accommodate the difference in timing between the two input streams, including the internal latency
before the block reads the first line. During simulation, the block warns when an overflow occurs. To
avoid the overflow condition, increase Maximum number of lines. The delay between streams
cannot exceed an entire frame.

When the input pixel is a vector or a matrix, the block replicates the circular buffer for each element.
For multipixel streaming, the block adjusts the line buffer size to store 1/Number of pixels pixels.
For instance, with a 4-by-3 input stream, each buffer stores ¼ of the pixels for a line, and the buffer is
12×2m-2 locations. The line address buffer remains the same size.

Algorithms
The block stores the data from the pixel input port to a circular buffer and then reads the lines out to
align with the reference control signals. The block also stores the address of the start of each line. To
match the added processing delay of the buffer data path, the block delays the reference pixel data
and control signals for around 10 cycles.

The diagram shows the architecture of the block. The RAM Circular Buffer is a memory of 2m pixels,
where m is Maximum number of lines + log2(Line buffer size). The Line Address Buffer has
Maximum number of lines locations. If the number of ctrl.Hstart assertions before the first
refCtrl.Hstart assertion is greater than the size of the Line Address Buffer, the block overwrites
both buffers and corrupts the output. In this diagram, Maximum number of lines is four, so four
locations exist to store a line address in the buffer. The Frame Start Buffer is a single location to store
ctrl.Vstart. The delay between the two streams must be less than the time between frame starts.

 Pixel Stream Aligner

1-153

When the input pixel is a vector or a matrix, the block replicates the RAM Circular Buffer for each
element. The diagram shows three RAM Circular Buffers, to represent a three-component pixel
stream. Each RAM Circular Buffer is 2m memory locations. For multipixel streaming, the block adjusts
the line buffer size to store 1/Number of pixels pixels. For instance, with a 4-by-3 input stream, each
buffer stores ¼ of the pixels for a line, and there are 12 RAM Circular Buffers, each with 2m-2

locations. The line address buffer remains the same size.

Extended Capabilities
C/C++ Code Generation
Generate C and C++ code using Simulink® Coder™.

This block supports C/C++ code generation for Simulink accelerator and rapid accelerator modes
and for DPI component generation.

HDL Code Generation
Generate Verilog and VHDL code for FPGA and ASIC designs using HDL Coder™.

HDL Coder provides additional configuration options that affect HDL implementation and synthesized
logic.

HDL Architecture

This block has a single, default HDL architecture.

1 Blocks

1-154

HDL Block Properties

ConstrainedOutputPi
peline

Number of registers to place at the outputs by moving existing delays
within your design. Distributed pipelining does not redistribute these
registers. The default is 0. For more details, see
“ConstrainedOutputPipeline” (HDL Coder).

InputPipeline Number of input pipeline stages to insert in the generated code.
Distributed pipelining and constrained output pipelining can move these
registers. The default is 0. For more details, see “InputPipeline” (HDL
Coder).

OutputPipeline Number of output pipeline stages to insert in the generated code.
Distributed pipelining and constrained output pipelining can move these
registers. The default is 0. For more details, see “OutputPipeline” (HDL
Coder).

Restrictions

You cannot generate HDL for this block inside a Resettable Synchronous Subsystem.

See Also
Blocks
Frame To Pixels

Objects
visionhdl.PixelStreamAligner

Introduced in R2017a

 Pixel Stream Aligner

1-155

Line Buffer
Store video lines and return neighborhood pixels
Library: Vision HDL Toolbox / Utilities

Description
The Line Buffer block selects neighborhood pixels from streaming image data. It handles video
control signals and edge padding, and is pipelined for high-speed video designs. The block outputs
one column of the neighborhood at a time. To compose a neighborhood for further processing, use the
shiftEnable signal to store the output columns, including padding, in a shift register. This block
allows you to share the line buffer resources when your design performs multiple operations on the
same neighborhood.

The following waveform shows the Line Buffer block returning 5-by-1 pixel columns that make up a 5-
by-5 neighborhood. The time frame shown is at the beginning (top-left corner) of an input frame. The
output starts after the block has stored two (floor(M/2)) lines and is receiving the start of the third
line. The shiftEnable signal is asserted two cycles earlier than the output ctrl.valid signal, which
indicates that the first two (floor(M/2)) columns are exclusively padding pixels. Similarly,
shiftEnable stays high for two extra cycles at the end of the line.

Ports
This block uses a streaming pixel interface with a bus for frame control signals. This interface
enables the block to operate independently of image size and format. The pixel ports on this block
support single pixel streaming or multipixel streaming. Single pixel streaming accepts and returns a
single pixel value each clock cycle. Multipixel streaming accepts and returns 4 or 8 pixels per clock
cycle to support high-frame-rate or high-resolution formats. Along with the pixel, the block accepts
and returns a pixelcontrol bus that contains five control signals. The control signals indicate the

1 Blocks

1-156

validity of each pixel and their location in the frame. For multipixel streaming, one set of control
signals applies to all four or eight pixels in the vector. To convert a frame (pixel matrix) into a serial
pixel stream and control signals, use the Frame To Pixels block. For a full description of the interface,
see “Streaming Pixel Interface”.

Input

pixel — Input pixel or multipixel vector
scalar | vector

This block supports single pixel streaming or multipixel streaming. For single pixel streaming, specify
a single input pixel as a scalar intensity value. For multipixel streaming, specify a vector of four or
eight pixel intensity values. For details of how to set up your model for multipixel streaming, see
“Filter Multipixel Video Streams”.

This block does not support multicomponent streaming. To process multicomponent streams,
replicate the block for each component. The pixelcontrol bus for all components is identical, so
you can connect a single bus to multiple replicated blocks.

double and single data types are supported for simulation, but not for HDL code generation.
Data Types: uint8 | uint16 | uint32 | int8 | int16 | int32 | fixed point | Boolean | double |
single

ctrl — Control signals associated with pixel stream
pixelcontrol bus

The pixelcontrol bus contains five signals. The signals describe the validity of the pixel and its
location in the frame. For more information, see “Pixel Control Bus”.

For multipixel streaming, each vector of pixel values has one set of control signals. Because the
vector has only one valid signal, the pixels in the vector must be either all valid or all invalid. The
hStart and vStart signals apply to the pixel with the lowest index in the vector. The hEnd and
vEnd signals apply to the pixel with the highest index in the vector.
Data Types: bus

Output

pixel — Column of neighborhood
column vector | matrix

Column of neighborhood pixel values, returned as a of 1-by-M vector, where M is the vertical
neighborhood dimension. When using multipixel streaming, the block returns a NumberOfPixels-by-M
matrix, where NumberOfPixels is the size of the input pixel vector. The output pixel data type is the
same as the data type of the input pixels.

To compose a neighborhood for further processing, use the shiftEnable signal to store the output
columns for each kernel region, including padding, in a shift register. For multipixel streaming, use
shift registers to construct NumberOfPixels regions, each of N-by-M pixels, and then perform the
kernel operation NumberOfPixels times in parallel.

Note HDL code generation is supported for small matrices, but matrix operations can impact
hardware performance and resource usage. Therefore, minimize how much your design operates on
an N-by-M neighborhood directly. You can :

 Line Buffer

1-157

• Separate a filter into vertical and horizontal components.
• Concatenate the neighborhood pixels into an (N*M)-by-1 vector.
• Use a For Each subsystem to store and operate on each pixel row.

These design suggestions provide opportunities to add pipelining around each adder or multiplier to
increase synthesized clock speed and fit the design to DSP blocks on an FPGA.

Data Types: int8 | int16 | int32 | uint8 | uint16 | uint32 | Boolean | double | single

ctrl — Control signals accompanying output column
pixelcontrol bus

Control signals accompanying the output column, returned as a pixelcontrol bus containing five
signals. The signals describe the validity of the center pixel of the column, and the location of that
pixel within the frame. See “Pixel Control Bus”.

Columns that contain only padding pixels do not assert ctrl.valid. The shiftEnable signal is
asserted for both padding and active columns.

Note For most of the frame, the block returns the input control signals that arrived with the bottom
pixel of the column. However, for the final floor(M/2) lines of each frame, the bottom pixel of the
column is a padding pixel, so the block generates output control signals. The block generates a
contiguously asserted ctrl.valid signal for the valid pixels in each line.

For multipixel streaming, there is one set of control signals for each vector of pixel values. Since
there is only one valid signal for the vector, the pixels in the vector are either all valid or all invalid.
The hStart and vStart signals apply to the pixel with the lowest index in the vector. The hEnd and
vEnd signals apply to the pixel with the highest index in the vector.
Data Types: bus

shiftEnable — Valid signal for neighborhood column
scalar

Valid signal for neighborhood columns, returned as a Boolean scalar. Use this signal to control a
shift register that composes a neighborhood from the output columns. This signal is true (1) for any
neighborhood column, indicating that the column contains valid image pixels or that the column was
added for edge padding.
Data Types: Boolean

Parameters
Neighborhood size — Size of output neighborhood
[3 3] (default) | 2-element row vector of integer dimensions

Size of output neighborhood to be formed, specified as a 2-element row vector of integer dimensions
[vertical horizontal]. The block returns a column vector of vertical elements. The horizontal
dimension is used to determine padding.

Padding method — Method for padding the boundary of input image
Symmetric (default) | Constant | Replicate | None

1 Blocks

1-158

Select one of these methods for padding the boundary of the input image. For more information about
these methods, see “Edge Padding”.

• Constant — Interpret pixels outside the image frame as having a constant value.
• Replicate — Repeat the value of pixels at the edge of the image.
• Symmetric — Set the value of the padding pixels to mirror the edge of the image.
• None — Exclude padding logic. The block does not set the pixels outside the image frame to any

particular value. This option reduces the hardware resources used by the block and the blanking
required between frames but affects the accuracy of the output pixels at the edges of the frame.
To maintain pixel stream timing, the output frame is the same size as the input frame. However, to
avoid using pixels calculated from undefined padding values, mask off the KernelSize/2 pixels
around the edge of the frame for downstream operations. For details, see “Increase Throughput
with Padding None”.

Padding value — Value used to pad boundary of input image
0 (default) | integer

Specify an integer to pad the boundary of the input image. The block casts this value to the same data
type as the input pixel.

Dependencies

To enable this parameter, set the Padding method parameter to Constant.

Line buffer size — Size of line memory buffer
2048 (default) | positive integer

Specify a power of two that accommodates the number of active pixels in a single horizontal line.

If you specify a value that is not a power of two, the block uses the next largest power of two.

Tips
• When you use this block inside an Enabled Subsystem, the enable signal pattern must maintain

the timing of the pixel stream, including the minimum blanking intervals. If the enable pattern
corrupts the timing of the pixel stream, you might see partial output frames, corrupted pixel
stream control signals, or mismatches between Simulink and HDL simulation results. You may
need to extend the blanking intervals to accommodate for cycles when the enable is low. For more
information, see “Configure Blanking Intervals”.

Algorithms
The block stores M – 1 lines of valid pixels, as specified by the neighborhood size. It adds padding bits
at the edge of the frame. The block returns the first output column once it can form a complete
neighborhood column, which occurs at the start of input line floor(M/2).

 Line Buffer

1-159

Performance

These resource and performance data are the synthesis results from the generated HDL targeted to a
Xilinx® Zynq®-7000 ZC706 FPGA. The synthesis results were generated using Xilinx Vivado® 2017.4.
The Line Buffer block is configured with symmetric padding and a line buffer size of 2048. The table
shows both odd and even neighborhood sizes.

 5-by-5 Kernel 6-by-6 Kernel
Clock frequency 300 MHz, 0.5 slack 300 MHz, 0.31 slack
LUT 647 790
Slice registers 1452 1844
BRAM 4 5

Latency

Note When you use edge padding, use a horizontal blanking interval greater than twice the kernel
width. This interval lets the block finish processing one line before it starts processing the next one,
including adding padding pixels before and after the active pixels in the line. Standard streaming
video formats use a horizontal blanking interval of about 25% of the frame width. This interval is
much larger than the filters applied to each frame. When you disable edge padding, the horizontal
blanking interval must be at least 12 cycles and is independent of the kernel size. If you are using a
custom video format, set the horizontal blanking interval by using the Frame To Pixels block
parameters. The horizontal blanking interval is equal to Total pixels per line – Active pixels per

1 Blocks

1-160

line or, equivalently, Front porch + Back porch. For more information, see “Configure Blanking
Intervals”.

Extended Capabilities
C/C++ Code Generation
Generate C and C++ code using Simulink® Coder™.

This block supports C/C++ code generation for Simulink accelerator and rapid accelerator modes
and for DPI component generation.

HDL Code Generation
Generate Verilog and VHDL code for FPGA and ASIC designs using HDL Coder™.

HDL Coder provides additional configuration options that affect HDL implementation and synthesized
logic.

HDL Architecture

This block has a single, default HDL architecture.

HDL Block Properties

ConstrainedOutputPi
peline

Number of registers to place at the outputs by moving existing delays
within your design. Distributed pipelining does not redistribute these
registers. The default is 0. For more details, see
“ConstrainedOutputPipeline” (HDL Coder).

InputPipeline Number of input pipeline stages to insert in the generated code.
Distributed pipelining and constrained output pipelining can move these
registers. The default is 0. For more details, see “InputPipeline” (HDL
Coder).

OutputPipeline Number of output pipeline stages to insert in the generated code.
Distributed pipelining and constrained output pipelining can move these
registers. The default is 0. For more details, see “OutputPipeline” (HDL
Coder).

See Also
Blocks
Frame To Pixels

Objects
visionhdl.LineBuffer

Introduced in R2017b

 Line Buffer

1-161

System Objects

2

visionhdl.BilateralFilter
Package: visionhdl

Perform 2-D filtering of a pixel stream

Description
The visionhdl.BilateralFilter object filters images while preserving edges. Some applications
of bilateral filtering are denoising while preserving edges, separating texture from illumination, and
cartooning to enhance edges. The filter replaces each pixel at the center of a neighborhood by an
average that is calculated using spatial and intensity Gaussian filters. The object determines the filter
coefficients from:

• Spatial location in the neighborhood (similar to a Gaussian blur filter)
• Intensity difference from the neighborhood center value

The object provides two standard deviation parameters for independent control of the spatial and
intensity coefficients.

To perform bilateral filtering of a pixel stream:

1 Create the visionhdl.BilateralFilter object and set its properties.
2 Call the object with arguments, as if it were a function.

To learn more about how System objects work, see What Are System Objects?.

Creation

Syntax
filt2d = visionhdl.BilateralFilter(Name,Value)

Description

filt2d = visionhdl.BilateralFilter(Name,Value) returns a bilateral filter System object™.
Set properties using name-value pairs. Enclose each property name in single quotes.

For example:

filt2d = visionhdl.BilateralFilter('CoefficientsDataType','Custom',...
 'CustomCoefficientsDataType',numerictype(0,18,17))

Properties
Unless otherwise indicated, properties are nontunable, which means you cannot change their values
after calling the object. Objects lock when you call them, and the release function unlocks them.

If a property is tunable, you can change its value at any time.

2 System Objects

2-2

For more information on changing property values, see System Design in MATLAB Using System
Objects.

NeighborhoodSize — Size of image region to average
'3×3' (default) | '5×5' | '7×7' | '9×9' | '11×11' | '13×13' | '15×15'

Size of the image region used to compute the average, specified as an N-by-N pixel square.

SpatialStdDev — Spatial standard deviation target
0.5 (default) | positive real number

Spatial standard deviation target used to compute coefficients for the spatial Gaussian filter, specified
as a positive real number. This parameter has no limits, but recommended values are from 0.1 to 10.
At the high end, the distribution becomes flat and the coefficients are small. At the low end, the
distribution peaks in the center and has small coefficients in the rest of the neighborhood. These
boundary values also depend on the neighborhood size and the data type used for the coefficients.

IntensityStdDev — Intensity standard deviation target
0.5 (default) | positive real number

Intensity standard deviation target used to compute coefficients for the intensity Gaussian filter,
specified as a positive real number. This parameter has no limits, but recommended values are from
0.1 to 10. At the high end, the distribution becomes flat and the coefficients are small. At the low end,
the distribution peaks in the center and has small coefficients in the rest of the neighborhood. These
boundary values also depend on the neighborhood size and the data type used for the coefficients.

When the intensity standard deviation is large, the bilateral filter acts more like a Gaussian blur filter,
because the intensity Gaussian has a lower peak. Conversely, when the intensity standard deviation is
smaller, edges in the intensity are preserved or enhanced.

PaddingMethod — Method for padding boundary of input image
'Constant' (default) | 'Replicate' | 'Symmetric' | 'None'

Select one of these methods for padding the boundary of the input image.

• 'Constant' — Interpret pixels outside the image frame as having a constant value.
• 'Replicate' — Repeat the value of pixels at the edge of the image.
• 'Symmetric' — Set the value of the padding pixels to mirror the edge of the image.
• 'None' — Exclude padding logic. The object does not set the pixels outside the image frame to

any particular value. This option reduces the hardware resources used by the object and the
blanking required between frames but affects the accuracy of the output pixels at the edges of the
frame. To maintain pixel stream timing, the output frame is the same size as the input frame.
However, to avoid using pixels calculated from undefined padding values, mask off the n/2 pixels
around the edge of the frame for downstream operations, where n is the size of the operation
kernel. For details, see “Increase Throughput with Padding None”.

For more information about these methods, see “Edge Padding”.

PaddingValue — Value used to pad boundary of input image
0 (default) | integer

Value used to pad the boundary of the input image, specified as an integer. The object casts this value
to the same data type as the input pixel.

 visionhdl.BilateralFilter

2-3

Dependencies

This parameter applies when you set PaddingMethod to 'Constant'.

LineBufferSize — Size of line memory buffer
2048 (default) | positive integer

Specify a power of two that accommodates the number of active pixels in a single horizontal line.

If you specify a value that is not a power of two, the object uses the next largest power of two.

RoundingMethod — Rounding mode used for fixed-point operations
'Floor' (default) | 'Ceiling' | 'Convergent' | 'Nearest' | 'Round' | 'Zero'

Rounding mode used for fixed-point operations. When the input is any integer or fixed-point data
type, the algorithm uses fixed-point arithmetic for internal calculations. This option does not apply
when the input data type is single or double.

OverflowAction — Overflow mode used for fixed-point operations
'Saturate' (default) | 'Wrap'

Overflow mode used for fixed-point operations. When the input is any integer or fixed-point data type,
the algorithm uses fixed-point arithmetic for internal calculations. This option does not apply when
the input data type is single or double.

CoefficientsDataType — Method to determine data type of filter coefficients
'Same as first input' (default) | 'Custom'

Method for determining the data type of the filter coefficients. The coefficients usually require a data
type with more precision than the input data type.

• 'Custom' — Sets the data type of the coefficients to match the data type defined in the
CustomCoefficientsDataType property.

• 'Same as first input'' — Sets the data type of the coefficients to match the data type of the
pixelIn argument.

CustomCoefficientsDataType — Data type for the filter coefficients
numerictype(0,16,15) (default) | numerictype(0,WL,FL)

Data type for the filter coefficients, specified as numerictype(0,WL,FL), where WL is the word
length and FL is the fraction length in bits.

Specify an unsigned data type that can represent values less than 1. The coefficients usually require a
data type with more precision than the input data type. The object calculates the coefficients based
on the neighborhood size and the values of IntensityStdDev and SpatialStdDev. Larger
neighborhoods spread the Gaussian function such that each coefficient value is smaller. A larger
standard deviation flattens the Gaussian so that the coefficients are more uniform in nature, and a
smaller standard deviation produces a peaked response.

Note If you try a data type and after quantization, more than half of the coefficients become zero, the
object issues a warning. If all the coefficients are zero after quantization, the object issues an error.
These messages mean that the object was unable to express the requested filter by using the data
type specified. To avoid this issue, choose a higher-precision coefficient data type or adjust the
standard deviation parameters.

2 System Objects

2-4

Dependencies

This property applies when you set CoefficientsDataType to 'Custom'.

OutputDataType — Method to determine data type of output pixels
'Same as first input' (default) | 'Custom'

Method to determine data type of output pixels.

• 'Same as first input'' — Sets the data type of the output pixels to match the data type of
pixelIn.

• 'Custom' — Sets the data type of the output pixels to match the data type defined in the
CustomOutputDataType property.

CustomOutputDataType — Data type for the output pixels
numerictype(1,16,15) (default) | numerictype(signed,WL,FL)

Data type for the output pixels, specified as numerictype(signed,WL,FL), where WL is the word
length and FL is the fraction length in bits. The filtered pixel values are cast to this data type.

Dependencies

This property applies when you set OutputDataType to 'Custom'.

Usage

Syntax
[pixelOut,ctrlOut] = filt2d(pixelIn,ctrlIn)

Description

[pixelOut,ctrlOut] = filt2d(pixelIn,ctrlIn) returns the filtered pixel value and
accompanying control signals.

This object uses a streaming pixel interface with a structure for frame control signals. This interface
enables the object to operate independently of image size and format, and to connect with other
Vision HDL Toolbox objects. The object accepts and returns a scalar pixel value and control signals as
a structure containing five signals. The control signals indicate the validity of each pixel and its
location in the frame. To convert a pixel matrix into a pixel stream and control signals, use the
visionhdl.FrameToPixels object. For a full description of the interface, see “Streaming Pixel
Interface”.

Input Arguments

pixelIn — Single image pixel
scalar

Single image pixel in a pixel stream, specified as a scalar value representing intensity. Integer and
fixed-point data types larger than 16 bits are not supported.

double and single data types are supported for simulation, but not for HDL code generation.
Data Types: uint8 | uint16 | int8 | int16 | fi | logical | double | single

 visionhdl.BilateralFilter

2-5

ctrlIn — Control signals accompanying input pixel stream
pixelcontrol structure

Control signals accompanying input pixel stream, specified as a pixelcontrol structure containing
five logical data type signals. The signals describe the validity of the pixel and its location in the
frame. For more details, see “Pixel Control Structure”.
Data Types: struct

Output Arguments

pixelOut — Single image pixel
scalar

Single image pixel in a pixel stream, returned as a scalar value representing intensity. Integer and
fixed-point data types larger than 16 bits are not supported.

double and single data types are supported for simulation, but not for HDL code generation.
Data Types: uint8 | uint16 | int8 | int16 | fi | logical | double | single

ctrlOut — Control signals accompanying output pixel stream
pixelcontrol structure

Control signals accompanying output the pixel stream, returned as a pixelcontrol structure
containing five logical data type signals. The signals describe the validity of the pixel and its
location in the frame. For more details, see “Pixel Control Structure”.
Data Types: struct

Object Functions
To use an object function, specify the System object as the first input argument. For example, to
release system resources of a System object named obj, use this syntax:

release(obj)

Common to All System Objects
step Run System object algorithm
release Release resources and allow changes to System object property values and input

characteristics
reset Reset internal states of System object

Examples

Create Bilateral Filter for HDL Generation

Load input image and create serializer and deserializer objects.

frmOrig = imread('rice.png');
frmActivePixels = 48;
frmActiveLines = 32;
frmIn = frmOrig(1:frmActiveLines,1:frmActivePixels);
figure

2 System Objects

2-6

imshow(frmIn,'InitialMagnification',300)
title 'Input Image'

frm2pix = visionhdl.FrameToPixels(...
 'NumComponents',1,...
 'VideoFormat','custom',...
 'ActivePixelsPerLine',frmActivePixels,...
 'ActiveVideoLines',frmActiveLines,...
 'TotalPixelsPerLine',frmActivePixels+10,...
 'TotalVideoLines',frmActiveLines+10,...
 'StartingActiveLine',6,...
 'FrontPorch',5);
[~,~,numPixPerFrm] = getparamfromfrm2pix(frm2pix);

pix2frm = visionhdl.PixelsToFrame(...
 'NumComponents',1,...
 'VideoFormat','custom',...
 'ActivePixelsPerLine',frmActivePixels,...
 'ActiveVideoLines',frmActiveLines);

Write a function that creates and calls the System object™. You can generate HDL from this function.

Note: This object syntax runs only in R2016b or later. If you are using an earlier release, replace
each call of an object with the equivalent step syntax. For example, replace myObject(x) with
step(myObject,x).

function [pixOut,ctrlOut] = BilatFilt(pixIn,ctrlIn)
%bilatFilt
% Filters one pixel according to the default spatial and intensity standard
% deviation, 0.5.
% pixIn and pixOut are scalar intensity values.
% ctrlIn and ctrlOut are structures that contain control signals associated
% with the pixel.
% You can generate HDL code from this function.

 persistent filt2d;
 if isempty(filt2d)
 filt2d = visionhdl.BilateralFilter(...
 'CoefficientsDataType','Custom',...
 'CustomCoefficientsDataType',numerictype(0,18,17));

 end
 [pixOut,ctrlOut] = filt2d(pixIn,ctrlIn);

 visionhdl.BilateralFilter

2-7

end

Filter the image by calling the function for each pixel.

pixOutVec = zeros(numPixPerFrm,1,'uint8');
ctrlOutVec = repmat(pixelcontrolstruct,numPixPerFrm,1);

[pixInVec,ctrlInVec] = frm2pix(frmIn);
for p = 1:numPixPerFrm
 [pixOutVec(p),ctrlOutVec(p)] = BilatFilt(pixInVec(p),ctrlInVec(p));
end
[frmOut,frmValid] = pix2frm(pixOutVec,ctrlOutVec);

if frmValid
 figure;
 imshow(frmOut,'InitialMagnification',300)
 title 'Output Image'
end

See Also
Blocks
Bilateral Filter

Objects
visionhdl.FrameToPixels

Introduced in R2017b

2 System Objects

2-8

visionhdl.BirdsEyeView
Package: visionhdl

Transform front-facing camera image into top-down view

Description
The visionhdl.BirdsEyeView System object warps a front-facing camera image into a top-down
view. It uses a hardware-efficient architecture that supports HDL code generation.

You must provide the homography matrix that describes the transform. This matrix can be calculated
from physical camera properties, or empirically derived by analyzing an image of a grid pattern taken
by the camera. The object uses the matrix to compute the transformed coordinates of each pixel. The
transform does not interpolate between pixel locations. Instead it rounds the result to the nearest
coordinate.

The object operates on a trapezoidal region of the input image below the vanishing point. These
images show the input region selected for transformation and the resulting top-down view.

You can specify the number of lines in the transformed region and the size of the output frame. If the
specified homography matrix cannot map from the requested number of lines to the requested output
size, the object returns a warning.

Because the object replicates lines from the input region to create the larger output frame, it cannot
complete the transform of one frame before the next frame arrives. The object ignores any new input

 visionhdl.BirdsEyeView

2-9

frames while it is still transforming the previous frame. Therefore, depending on the stored lines and
output size, the object can drop input frames. This timing also enables the object to maintain the
blanking intervals of the input pixel stream.

To transform a front-facing camera image to top-down view:

1 Create the visionhdl.BirdsEyeView object and set its properties.
2 Call the object with arguments, as if it were a function.

To learn more about how System objects work, see What Are System Objects?.

Creation

Syntax
birdsEyeXfrm = visionhdl.BirdsEyeView(hM,MaxBufferSize,Name,Value)

Description

birdsEyeXfrm = visionhdl.BirdsEyeView(hM,MaxBufferSize,Name,Value) returns a
bird's-eye transform System object, with the homography matrix set to hM, and a buffer size of
MaxBufferSize pixels. You can optionally set additional properties using name-value pairs. Enclose
each property name in single quotes.

Properties
Unless otherwise indicated, properties are nontunable, which means you cannot change their values
after calling the object. Objects lock when you call them, and the release function unlocks them.

If a property is tunable, you can change its value at any time.

For more information on changing property values, see System Design in MATLAB Using System
Objects.

HomographyMatrix — Transfer function derived from camera parameters
[0.000100990123328 0 0;0.000412396945637 0.001302203393162
1.293171994e-06;-0.103019798961327 -0.255811259450009 -0.000222053779501]
(default) | 3-by-3 matrix

Transfer function derived from camera parameters, specified as a 3-by-3 matrix.

The homography matrix, h, is derived from four intrinsic parameters of the physical camera setup:
the focal length, pitch, height, and principal point (from a pinhole camera model). The default value is
the matrix for the camera setup used in the “Lane Detection” example.

This matrix can be calculated from physical camera properties, or empirically derived by analyzing an
image of a grid test pattern taken by the camera. See estimateGeometricTransform or “Single
Camera Calibrator App” (Computer Vision Toolbox).

MaxBufferSize — Number of input pixels to buffer
40000 (default) | integer

2 System Objects

2-10

Number of input pixels to buffer, specified as an integer. Compute this value from
MaxSourceLinesBuffered*ActivePixelsPerLine. The object uses a memory of this size to store the
input pixels. If you specify a value that is not a power of two, the object uses the next largest power of
two.

MaxSourceLinesBuffered — Number of lines to transform
54 (default) | integer

Number of lines to transform, specified as an integer. The object stores and transforms this number
of lines into the output bird's-eye view image, starting at the vanishing point as determined by the
HomographyMatrix.

Storing the full input frame uses too much memory to implement the algorithm without off-chip
storage. Therefore, for a hardware implementation, choose a smaller region to store and transform,
one that generates an acceptable output frame size.

For example, using the default HomographyMatrix with an input image of 640-by-480 pixels, the
full-sized transform results in a 900-by-640 output image. Analysis of the input-to-output x-coordinate
mapping shows that around 50 lines of the input image are required to generate the top 700 lines of
the bird's-eye view output image. This number of input lines can be stored using on-chip memory. The
vanishing point for the default camera setup is around line 200, and lines above that point do not
contribute to the resulting bird's-eye view. Therefore, the object can store only input lines 200–250
for transformation.

BirdEyeActivePixels — Horizontal size of output frame
640 (default) | integer

Horizontal size of output frame, specified as an integer. This parameter is the number of active pixels
in each output line.

BirdEyeActiveLines — Vertical size of output frame
700 (default) | integer

Vertical size of output frame, specified as an integer. This parameter is the number of active lines in
each output frame.

Usage

Syntax
[pixelOut,ctrlOut] = birdsEyeXfrm(pixelIn,ctrlIn)

Description

[pixelOut,ctrlOut] = birdsEyeXfrm(pixelIn,ctrlIn) returns the bird's-eye view
transformation of the input stream. The frame size of the output stream corresponds to the size you
configured in the BirdsEyeViewPixels and BirdsEyeViewLines properties.

This object uses a streaming pixel interface with a structure for frame control signals. This interface
enables the object to operate independently of image size and format, and to connect with other
Vision HDL Toolbox objects. The object accepts and returns a scalar pixel value and control signals as
a structure containing five signals. The control signals indicate the validity of each pixel and its
location in the frame. To convert a pixel matrix into a pixel stream and control signals, use the

 visionhdl.BirdsEyeView

2-11

visionhdl.FrameToPixels object. For a full description of the interface, see “Streaming Pixel
Interface”.

Input Arguments

pixelIn — Single image pixel
scalar

Single image pixel in a pixel stream, specified as a scalar value representing intensity.

double and single data types are supported for simulation, but not for HDL code generation.
Data Types: uint8 | uint16 | uint32 | int8 | int16 | int32 | fi | logical | double | single

ctrlIn — Control signals accompanying input pixel stream
pixelcontrol structure

Control signals accompanying input pixel stream, specified as a pixelcontrol structure containing
five logical data type signals. The signals describe the validity of the pixel and its location in the
frame. For more details, see “Pixel Control Structure”.
Data Types: struct

Output Arguments

pixelOut — Single image pixel
scalar

Single image pixel in a pixel stream, returned as a scalar value representing intensity.

double and single data types are supported for simulation, but not for HDL code generation.
Data Types: uint8 | uint16 | uint32 | int8 | int16 | int32 | fi | logical | double | single

ctrlOut — Control signals accompanying output pixel stream
pixelcontrol structure

Control signals accompanying output the pixel stream, returned as a pixelcontrol structure
containing five logical data type signals. The signals describe the validity of the pixel and its
location in the frame. For more details, see “Pixel Control Structure”.
Data Types: struct

Object Functions
To use an object function, specify the System object as the first input argument. For example, to
release system resources of a System object named obj, use this syntax:

release(obj)

Common to All System Objects
step Run System object algorithm
release Release resources and allow changes to System object property values and input

characteristics
reset Reset internal states of System object

2 System Objects

2-12

Algorithms
The transform from input pixel coordinate (x,y) to the bird's-eye pixel coordinate is derived from the
homography matrix, h. The homography matrix is based on physical parameters and therefore is a
constant for a particular camera installation.

(x , y) = round
h11x + h12y + h13
h31x + h32y + h33

,
h21x + h22y + h23
h31x + h32y + h33

The implementation of the bird's-eye transform in hardware does not directly perform this
calculation. Instead, the object precomputes lookup tables for the horizontal and vertical aspects of
the transform.

First, the object stores the input lines starting from the precomputed vanishing point. The stored
pixels form a trapezoid, with short lines near the vanishing point and wider lines near the camera.
This storage uses MaxBufferSize memory locations.

The horizontal lookup table contains interpolation parameters that describe the stretch of each line of
the trapezoidal input region to the requested width of the output frame. Lines that fall closer to the
vanishing point are stretched more than lines nearer to the camera.

The vertical lookup table contains the y-coordinate mapping, and how many times each line is
repeated to fill the requested height of the output frame. Near the vanishing point, one input line
maps to many output lines, while each line nearer the camera maps to a diminishing number of
output lines.

The lookup tables use 3*MaxSourceLinesBuffered memory locations.

See Also
Blocks
Birds-Eye View

Objects
visionhdl.FrameToPixels

Functions
estimateGeometricTransform | imwarp

Topics
“Single Camera Calibrator App” (Computer Vision Toolbox)

 visionhdl.BirdsEyeView

2-13

Introduced in R2017b

2 System Objects

2-14

visionhdl.ChromaResampler
Package: visionhdl

Downsample or upsample chrominance component

Description
visionhdl.ChromaResampler downsamples or upsamples a pixel stream.

• Downsampling reduces bandwidth and storage requirements in a video system by combining pixel
chrominance components over multiple pixels. You can specify a filter to prevent aliasing, by
selecting the default filter or by entering coefficients.

• Upsampling restores a signal to its original rate. You can use interpolation or replication to
calculate the extra sample.

This object uses a streaming pixel interface with a structure for frame control signals. This interface
enables the object to operate independently of image size and format, and to connect with other
Vision HDL Toolbox objects. The object accepts and returns a scalar pixel value and control signals as
a structure containing five signals. The control signals indicate the validity of each pixel and its
location in the frame. To convert a pixel matrix into a pixel stream and control signals, use the
visionhdl.FrameToPixels object. For a full description of the interface, see “Streaming Pixel
Interface”.

The object accepts luma and the chrominance components. The object does not modify the luma
component and applies delay to align with the resampled chrominance outputs. The rate of the output
luma component is the same as the input.

Note Starting in R2016b, instead of using the step method to perform the operation defined by the
System object, you can call the object with arguments, as if it were a function. For example, y =
step(obj,x) and y = obj(x) perform equivalent operations.

Construction
CR = visionhdl.ChromaResampler returns a System object, CR, that downsamples from 4:4:4 to
4:2:2 and applies the default antialiasing filter.

CR = visionhdl.ChromaResampler(Name,Value) returns a chroma resampler System object,
CR, with additional options specified by one or more Name,Value pair arguments. Name is a property
name on page 2-15 and Value is the corresponding value. Name must appear inside single quotes
(''). You can specify several name-value pair arguments in any order as
Name1,Value1,...,NameN,ValueN. Properties not specified retain their default values.

Properties
Resampling

Resampling format.

 visionhdl.ChromaResampler

2-15

• 4:4:4 to 4:2:2 (default) — Perform a downsampling operation.
• 4:2:2 to 4:4:4 — Perform an upsampling operation.

AntialiasingFilterSource

Lowpass filter to accompany a downsample operation.

• Auto (default) — Built-in lowpass filter.
• Property — Filter using the coefficients in HorizontalFilterCoefficients property.
• None — No filtering of the input signal.

This property applies when you set Resampling to 4:4:4 to 4:2:2.

HorizontalFilterCoefficients

Coefficients for the antialiasing filter.

Enter the coefficients as a vector. This property applies when you set Resampling to 4:4:4 to
4:2:2 and Antialiasing filter to Property.

Default: [0.2,0.6,0.2]

InterpolationFilter

Interpolation method for an upsample operation.

• Linear (default) — Linear interpolation to calculate the missing values.
• Pixel replication — Repeat the chrominance value of the preceding pixel to create the

missing pixel.

This property applies when you set Resampling to 4:2:2 to 4:4:4.

RoundingMethod

Rounding mode used for fixed-point operations.

The object uses fixed-point arithmetic for internal calculations when the input is any integer or fixed-
point data type. This option does not apply when the input data type is single or double.

Default: Floor

OverflowAction

Overflow action used for fixed-point operations.

The object uses fixed-point arithmetic for internal calculations when the input is any integer or fixed-
point data type. This option does not apply when the input data type is single or double.

Default: Wrap

CustomCoefficientsDataType

Data type for the antialiasing filter coefficients.

2 System Objects

2-16

Specify a custom data type as a character vector. This parameter applies when you set
Antialiasing filter to Property or Auto.

Default: 'fixdt(1,16,0)'

Methods

step Compute next pixel in upsampled or downsampled pixel stream

Common to All System Objects
release Allow System object property value changes

Examples

Downsample a Y'CbCr Image

Resample a 4:4:4 Y'CbCr image to 4:2:2. The example also shows how to convert a R'G'B' input image
to Y'CbCr color space.

Prepare a test image by selecting a portion of an image file.

frmActivePixels = 64;
frmActiveLines = 48;
frmOrig = imread('fabric.png');
frmInput = frmOrig(1:frmActiveLines,1:frmActivePixels,:);

Create a serializer and specify the size of inactive pixel regions. The number of padding pixels on
each line must be greater than the latency of each pixel-processing object.

frm2pix = visionhdl.FrameToPixels(...
 'NumComponents',3,...
 'VideoFormat','custom',...
 'ActivePixelsPerLine',frmActivePixels,...
 'ActiveVideoLines',frmActiveLines,...
 'TotalPixelsPerLine',frmActivePixels+40,...
 'TotalVideoLines',frmActiveLines+10,...
 'StartingActiveLine',6,...
 'FrontPorch',5);

Create a color space converter and resampler, using the default property values. The default
conversion is 'RGB to YCbCr'. The default resampling mode is '4:4:4 to 4:2:2'. The default anti-
aliasing filter is a 29-tap lowpass filter. This gives the object a latency of 30 cycles.

convert2ycbcr = visionhdl.ColorSpaceConverter();
downsampler = visionhdl.ChromaResampler();

Serialize the test image using the serializer object. pixIn is a numPixelsPerFrame -by-3 matrix.
ctrlIn is a vector of control signal structures. Preallocate vectors for the output signals.

Note: This syntax runs only in R2016b or later. If you are using an earlier release, replace each call
of an object with the equivalent step syntax. For example, replace myObject(x) with
step(myObject,x).

 visionhdl.ChromaResampler

2-17

[pixIn,ctrlIn] = frm2pix(frmInput);

[~,~,numPixelsPerFrame] = getparamfromfrm2pix(frm2pix);
pix444 = zeros(numPixelsPerFrame,3,'uint8');
ctrl444 = repmat(pixelcontrolstruct,numPixelsPerFrame,1);
pix422 = zeros(numPixelsPerFrame,3,'uint8');
ctrl422 = repmat(pixelcontrolstruct,numPixelsPerFrame,1);

For each pixel in the stream, convert to YCbCr, then downsample.

for p = 1:numPixelsPerFrame
 [pix444(p,:),ctrl444(p)] = convert2ycbcr(pixIn(p,:),ctrlIn(p));
 [pix422(p,:),ctrl422(p)] = downsampler(pix444(p,:),ctrl444(p));
end

Create deserializers with a format matching that of the serializer. Convert the 4:4:4 and 4:2:2 pixel
streams back to image frames.

pix2frm444 = visionhdl.PixelsToFrame(...
 'NumComponents',3,...
 'VideoFormat','custom',...
 'ActivePixelsPerLine',frmActivePixels,...
 'ActiveVideoLines',frmActiveLines);

pix2frm422 = visionhdl.PixelsToFrame(...
 'NumComponents',3,...
 'VideoFormat','custom',...
 'ActivePixelsPerLine',frmActivePixels,...
 'ActiveVideoLines',frmActiveLines);

[frm444,frmValid] = pix2frm444(pix444,ctrl444);
[frm422,frmValid] = pix2frm422(pix422,ctrl422);

There are the same number of pixels in the 4:2:2 and 4:4:4 pixel-streams and frames. To examine the
resampled data, regroup the pixel data for the first 8 pixels of the first line. The first row is the Y
elements of the pixels, the second row is the Cb elements, and the third row is the Cr elements.
Notice that, in the 4:2:2 data, the Cb and Cr elements change only every second sample.

YCbCr444 = [frm444(1,1:8,1); frm444(1,1:8,2); frm444(1,1:8,3)]

YCbCr444 = 3x8 uint8 matrix

 132 134 129 124 125 122 118 119
 116 118 119 122 122 121 123 123
 135 131 125 121 119 116 118 118

YCbCr422 = [frm422(1,1:8,1); frm422(1,1:8,2); frm422(1,1:8,3)]

YCbCr422 = 3x8 uint8 matrix

 132 134 129 124 125 122 118 119
 116 116 120 120 122 122 123 123
 135 135 126 126 119 119 118 118

figure

2 System Objects

2-18

imshow(frm422,'InitialMagnification',300)
title '4:2:2'

figure
imshow(frm444,'InitialMagnification',300)
title '4:4:4'

Algorithms
This object implements the algorithms described on the Chroma Resampler block reference page.

See Also
Chroma Resampler | vision.ChromaResampler | visionhdl.FrameToPixels

Introduced in R2015a

 visionhdl.ChromaResampler

2-19

step
System object: visionhdl.ChromaResampler
Package: visionhdl

Compute next pixel in upsampled or downsampled pixel stream

Syntax
[pixelOut,ctrlOut] = step(resample,pixelIn,ctrlIn)

Description

Note Starting in R2016b, instead of using the step method to perform the operation defined by the
System object, you can call the object with arguments, as if it were a function. For example, y =
step(obj,x) and y = obj(x) perform equivalent operations.

[pixelOut,ctrlOut] = step(resample,pixelIn,ctrlIn) computes the next output pixel,
pixelOut, in the resampled video stream. The pixel data arguments, pixelIn and pixelOut, are
vectors of three values representing a pixel in Y'CbCr color space. The luma component and control
signals, ctrlIn, are passed through and aligned with the output pixel stream.

This object uses a streaming pixel interface with a structure for frame control signals. This interface
enables the object to operate independently of image size and format, and to connect with other
Vision HDL Toolbox objects. The object accepts and returns a scalar pixel value and control signals as
a structure containing five signals. The control signals indicate the validity of each pixel and its
location in the frame. To convert a pixel matrix into a pixel stream and control signals, use the
visionhdl.FrameToPixels object. For a full description of the interface, see “Streaming Pixel
Interface”.

Note The System object performs an initialization the first time you call the step method. This
initialization locks nontunable properties and input specifications, such as dimensions, complexity,
and data type of the input data. If you change a nontunable property or an input specification, the
object issues an error. To change nontunable properties or inputs, first call the release method to
unlock the object.

Input Arguments
resample — Resampler
visionhdl.ChromaResampler System object

Specify a visionhdl.ChromaResampler System object that you created and configured.

pixelIn — Input pixel
vector

Single pixel in gamma-corrected Y'CbCr color space, specified as a vector of three values.

2 System Objects

2-20

Supported data types:

• uint8 or uint16
• fixdt(0,N,0), N = 8,9,...,16
• double and single data types are supported for simulation, but not for HDL code generation.

ctrlIn — Control signals accompanying input pixel stream
pixelcontrol structure

Control signals accompanying input pixel stream, specified as a pixelcontrol structure containing
five logical data type signals. The signals describe the validity of the pixel and its location in the
frame. For more details, see “Pixel Control Structure”.
Data Types: struct

Output Arguments
pixelOut — Output pixel
vector

Single pixel in gamma-corrected Y'CbCr color space, returned as a vector of three values.

Supported data types:

• uint8 or uint16
• fixdt(0,N,0), N = 8,9,...,16
• double and single data types are supported for simulation, but not for HDL code generation.

ctrlOut — Control signals accompanying output pixel stream
pixelcontrol structure

Control signals accompanying output the pixel stream, returned as a pixelcontrol structure
containing five logical data type signals. The signals describe the validity of the pixel and its
location in the frame. For more details, see “Pixel Control Structure”.
Data Types: struct

Introduced in R2015a

 step

2-21

visionhdl.ColorSpaceConverter
Package: visionhdl

Convert color information between color spaces

Description
visionhdl.ColorSpaceConverter converts between R'G'B' and Y'CbCr color spaces, and also
converts R'G'B' to intensity.

This object uses a streaming pixel interface with a structure for frame control signals. This interface
enables the object to operate independently of image size and format, and to connect with other
Vision HDL Toolbox objects. The object accepts and returns a scalar pixel value and control signals as
a structure containing five signals. The control signals indicate the validity of each pixel and its
location in the frame. To convert a pixel matrix into a pixel stream and control signals, use the
visionhdl.FrameToPixels object. For a full description of the interface, see “Streaming Pixel
Interface”.

Note The ColorSpaceConverter System object operates on gamma-corrected color spaces.
However, to simplify use of the System object, the property arguments do not include the prime
notation.

Note Starting in R2016b, instead of using the step method to perform the operation defined by the
System object, you can call the object with arguments, as if it were a function. For example, y =
step(obj,x) and y = obj(x) perform equivalent operations.

Construction
CSC = visionhdl.ColorSpaceConverter returns a System object, CSC, that converts R'G'B' to
Y'CbCr using the Rec. 601 (SDTV) standard.

CSC = visionhdl.ColorSpaceConverter(Name,Value) returns a System object, CSC, with
additional options specified by one or more Name,Value pair arguments. Name is a property name on
page 2-22 and Value is the corresponding value. Name must appear inside single quotes (''). You
can specify several name-value pair arguments in any order as Name1,Value1,...,NameN,ValueN.
Properties not specified retain their default values.

Properties
Conversion

Conversion that the object performs on the input video stream.

• RGB to YCbCr (default)
• YCbCr to RGB
• RGB to intensity

2 System Objects

2-22

The step method accepts input as a vector of three values representing a single pixel. If you choose
RGB to intensity, the output is a scalar value. Otherwise, the output is a vector of three values.

ConversionStandard

Conversion equation to use on the input video stream.

• Rec. 601 (SDTV) (default)
• Rec. 709 (HDTV)

This property does not apply when you set Conversion to RGB to intensity.

ScanningStandard

Scanning standard to use for HDTV conversion.

• 1250/50/2:1 (default)
• 1125/60/2:1

This property applies when you set ConversionStandard to Rec. 709 (HDTV).

Methods

step Convert one pixel between color spaces

Common to All System Objects
release Allow System object property value changes

Examples

Convert a Color Image to Grayscale

This example shows how to convert pixel stream data to a different color space.

Set the dimensions of the test image and load a color source image. Select a portion of the image
matching the desired test size.

frmActivePixels = 64;
frmActiveLines = 48;
frmOrig = imread('fabric.png');
frmInput = frmOrig(1:frmActiveLines,1:frmActivePixels,:);
figure
imshow(frmInput,'InitialMagnification',300)
title 'Input Image'

 visionhdl.ColorSpaceConverter

2-23

Create a serializer object and specify size of inactive pixel regions.

frm2pix = visionhdl.FrameToPixels(...
 'NumComponents',3,...
 'VideoFormat','custom',...
 'ActivePixelsPerLine',frmActivePixels,...
 'ActiveVideoLines',frmActiveLines,...
 'TotalPixelsPerLine',frmActivePixels+10,...
 'TotalVideoLines',frmActiveLines+10,...
 'StartingActiveLine',6,...
 'FrontPorch',5);

Create a color space converter object. Select a conversion from RGB to grayscale.

convertrgb2gray = visionhdl.ColorSpaceConverter(...
 'Conversion','RGB to intensity');

Serialize the test image. pixIn is a numPixelsPerFrame-by-3 matrix. ctrlIn is a vector of control
signal structures.

Note: This syntax runs only in R2016b or later. If you are using an earlier release, replace each call
of an object with the equivalent step syntax. For example, replace myObject(x) with
step(myObject,x).

[pixIn,ctrlIn] = frm2pix(frmInput);

Set up variables, and convert each pixel in the stream to the new color space.

[~,~,numPixelsPerFrame] = getparamfromfrm2pix(frm2pix);
pixOut = zeros(numPixelsPerFrame,1,'uint8');
ctrlOut = repmat(pixelcontrolstruct,numPixelsPerFrame,1);
for p = 1:numPixelsPerFrame
 [pixOut(p),ctrlOut(p)] = convertrgb2gray(pixIn(p,:),ctrlIn(p));
end

Create a deserializer object with format matching that of the serializer. Convert the pixel stream to an
image frame, and display the grayscale output image.

pix2frm = visionhdl.PixelsToFrame(...
 'NumComponents',1,...

2 System Objects

2-24

 'VideoFormat','custom',...
 'ActivePixelsPerLine',frmActivePixels,...
 'ActiveVideoLines',frmActiveLines);
[frmOutput,frmValid] = pix2frm(pixOut,ctrlOut);
if frmValid
 figure
 imshow(frmOutput,'InitialMagnification',300)
 title 'Output Image'
end

Algorithms
This object implements the algorithms described on the Color Space Converter block reference page.

See Also
Color Space Converter | rgb2gray | rgb2ycbcr | visionhdl.FrameToPixels | ycbcr2rgb

Introduced in R2015a

 visionhdl.ColorSpaceConverter

2-25

step
System object: visionhdl.ColorSpaceConverter
Package: visionhdl

Convert one pixel between color spaces

Syntax
[pixelOut,ctrlOut] = step(convert_color_space,pixelIn,ctrlIn)

Description

Note Starting in R2016b, instead of using the step method to perform the operation defined by the
System object, you can call the object with arguments, as if it were a function. For example, y =
step(obj,x) and y = obj(x) perform equivalent operations.

[pixelOut,ctrlOut] = step(convert_color_space,pixelIn,ctrlIn) converts a single
pixel from one color space to another. The input, pixelIn is a vector of three values representing
one pixel in R'G'B' or Y'CbCr color space. If the Conversion property is set to RGB to YCbCr or
YCbCr to RGB, then pixelOut is a vector of three values representing one pixel. If the
Conversion property is set to RGB to intensity, then pixelOut is a scalar value representing
one pixel.

This object uses a streaming pixel interface with a structure for frame control signals. This interface
enables the object to operate independently of image size and format, and to connect with other
Vision HDL Toolbox objects. The object accepts and returns a scalar pixel value and control signals as
a structure containing five signals. The control signals indicate the validity of each pixel and its
location in the frame. To convert a pixel matrix into a pixel stream and control signals, use the
visionhdl.FrameToPixels object. For a full description of the interface, see “Streaming Pixel
Interface”.

Note The ColorSpaceConverter System object operates on gamma-corrected color spaces.
However, to simplify use of the System object, the property arguments do not include the prime
notation.

Note The System object performs an initialization the first time you call the step method. This
initialization locks nontunable properties and input specifications, such as dimensions, complexity,
and data type of the input data. If you change a nontunable property or an input specification, the
object issues an error. To change nontunable properties or inputs, first call the release method to
unlock the object.

Input Arguments
convert_color_space — Color space converter
visionhdl.ColorSpaceConverter System object

2 System Objects

2-26

Specify a visionhdl.ColorSpaceConverter System object that you created and configured.

pixelIn — Input pixel
vector

Input pixel in gamma-corrected R'G'B' or Y'CbCr color space, specified as a vector of unsigned
integer values.

Supported data types:

• uint8 or uint16
• fixdt(0,N,0), N = 8,9,...,16
• double and single data types are supported for simulation, but not for HDL code generation.

ctrlIn — Control signals accompanying input pixel stream
pixelcontrol structure

Control signals accompanying input pixel stream, specified as a pixelcontrol structure containing
five logical data type signals. The signals describe the validity of the pixel and its location in the
frame. For more details, see “Pixel Control Structure”.
Data Types: struct

Output Arguments
pixelOut — Output pixel
vector

Output pixel specified as a vector of three unsigned integer values, or a scalar unsigned integer
value.

• If you set the Conversion property to RGB to YCbCr or YCbCr to RGB, then pixelOut is a
vector representing the pixel in gamma-corrected color space.

• If you set the Conversion property to RGB to intensity, then pixelOut is a scalar
representing pixel intensity.

Supported data types:

• uint8 or uint16
• fixdt(0,N,0), N = 8,9,....,16
• double and single data types are supported for simulation, but not for HDL code generation.

ctrlOut — Control signals accompanying output pixel stream
pixelcontrol structure

Control signals accompanying output the pixel stream, returned as a pixelcontrol structure
containing five logical data type signals. The signals describe the validity of the pixel and its
location in the frame. For more details, see “Pixel Control Structure”.
Data Types: struct

Introduced in R2015a

 step

2-27

visionhdl.CornerDetector
Package: visionhdl

Finds corners using FAST or Harris algorithm

Description
The visionhdl.CornerDetector System object detects corners by using the features-from-
accelerated-segment test (FAST) algorithm or by the intersecting edges (Harris) algorithm. For each
pixel, if the pixel is a corner, the object returns the corner metric. If the pixel is not a corner, the
object returns a pixel value of zero.

The FAST algorithm tests a circular area around the potential center of the corner. The test detects a
corner if a contiguous section of pixels are either brighter than the center plus a threshold or darker
than the center minus a threshold. You can specify a minimum contrast threshold as a property or
argument and select from three rules to define a corner. These rules specify how many pixels in a
circle of pixels must exceed the minimum contrast for the center pixel to be considered a corner. The
object performs parallel tests of all combinations of contiguous pixels around the circle. The FAST
algorithm uses few hardware resources.

The Harris algorithm computes horizontal and vertical gradients, filters the gradient components
with a circular 5-by-5 Gaussian filter, and computes a metric that represents the strength of the
corner. You can specify a threshold that determines the level at which corners are detected. The
object returns a corner for pixels where the metric exceeds this threshold. The Harris algorithm uses
more hardware resources than the FAST algorithm, but can detect corners that the FAST algorithm
might not find.

To detect corners in a pixel stream:

1 Create the visionhdl.CornerDetector object and set its properties.
2 Call the object with arguments, as if it were a function.

To learn more about how System objects work, see What Are System Objects?.

Creation

Syntax
corners = visionhdl.CornerDetector(Name,Value)

Description

corners = visionhdl.CornerDetector(Name,Value) returns a corner detector System object.
Set properties using one or more name-value pairs. Enclose each property name in single quotes.

For example:

2 System Objects

2-28

corners = visionhdl.CornerDetector('Method','FAST 7 of 12',...
 'MinContrastSource','Input port',...
 'PaddingMethod','None')

Properties
Unless otherwise indicated, properties are nontunable, which means you cannot change their values
after calling the object. Objects lock when you call them, and the release function unlocks them.

If a property is tunable, you can change its value at any time.

For more information on changing property values, see System Design in MATLAB Using System
Objects.

Method — Detection method
'FAST 5 of 8' (default) | 'FAST 7 of 12' | 'FAST 9 of 16' | 'Harris'

Select the Harris algorithm, or the size of the circle for the FAST algorithm. The three FAST options
specify how many contiguous pixels on the circle must exceed the threshold for the center pixel to be
marked as a corner. For the circles of 8, 12, and 16 pixels shown in these figures, the object detects a
corner when 5, 7, or 9 contiguous pixels,respectively, are above the threshold. The object checks for
this number of contiguous pixels anywhere on the circle. The object uses a kernel of size 3-by-3 for
'FAST 5 of 8', 5-by-5 for 'FAST 7 of 12', and 7-by-7 for 'FAST 9 of 16'.

MinContrastSource — Source for threshold that indicates corner for FAST algorithm
'Property' (default) | 'Input port'

Specify 'Property' to set the contrast threshold by using the MinContrast property. Specify
'Input port' to enable the thresh input argument.

Dependencies

To enable this property, set the Method property to one of the FAST options.

MinContrast — Threshold that indicates corner for FAST algorithm
20 (default) | nonnegative integer

 visionhdl.CornerDetector

2-29

Each pixel in the circle is subtracted from the center pixel value, and only those differences that
exceed this threshold are used to determine if the center pixel is a corner and to calculate the output
metric. This value is cast to the same data type as pixelIn.
Dependencies

To enable this property, set the Method property to one of the FAST options and set the
MinContrastSource property to 'Property'.

ThresholdSource — Source for threshold that indicates corner for Harris algorithm
'Property' (default) | 'Input port'

Specify 'Property' to set the threshold by using the Threshold property. Specify 'Input port'
to enable the thresh input argument.
Dependencies

To enable this property, set the Method property to 'Harris'.

Threshold — Threshold that indicates corner for Harris algorithm
15000 (default) | nonnegative integer

This value represents an approximation of the eigenvalues of the Harris matrix calculated from the
gradient results. The object returns a corner for pixels where the metric exceeds this threshold. This
value is cast to the same data type as the output corner. The corner metric is in the range of a
fourth power of the input pixel values. For example, for an 8-bit input pixel, the full-precision output
size is 44 bits.
Dependencies

To enable this property, set the Method property to 'Harris' and set the ThresholdSource
property to 'Property'.

LineBufferSize — Size of line buffer
2048 (default) | integer

Specify a power of two that accommodates the number of active pixels in a single horizontal line.

If you specify a value that is not a power of two, the object uses the next largest power of two. The
object allocates (N – 1)-by-LineBufferSize memory locations to store the pixels. N is the size of the
kernel.

The object uses a kernel of size 3-by-3 when the Method property is 'FAST 5 of 8', 5-by-5 when
Method is 'FAST 7 of 12', and 7-by-7 when Method is 'FAST 9 of 16'.

When you set Method to 'Harris', the object uses one 1-by-3 kernel and one 3-by-1 kernel for the
gradient calculation and three 5-by-5 kernels for the circular window filter on the three gradient
components.

PaddingMethod — Method for padding
'Symmetric' (default) | 'Replicate' | 'None'

Select one of these methods for padding the boundary of the input image. For more information about
these methods, see “Edge Padding”.

• 'Symmetric' — Set the value of the padding pixels to mirror the edge of the image. This option
prevents corners from being detected at the boundaries of the active frame.

2 System Objects

2-30

• 'Replicate' — Repeat the value of pixels at the edge of the image.
• 'None' — Exclude padding logic. The object does not set the pixels outside the image frame to

any particular value. This option reduces the hardware resources used by the object and the
blanking required between frames but affects the accuracy of the output pixels at the edges of the
frame. To maintain pixel stream timing, the output frame is the same size as the input frame.
However, to avoid using pixels calculated from undefined padding values, mask off the n/2 pixels
around the edge of the frame for downstream operations, where n is the size of the operation
kernel. For details, see “Increase Throughput with Padding None”.

The circular window filters used in the Harris algorithm pad the edges of the frame using
'Replicate' padding.

RoundingMethod — Rounding mode used for fixed-point operations
'Floor' (default) | 'Ceiling' | 'Convergent' | 'Nearest' | 'Round' | 'Zero'

Rounding mode used for fixed-point operations. When the input is any integer or fixed-point data
type, the algorithm uses fixed-point arithmetic for internal calculations. This option does not apply
when the input data type is single or double.

OverflowAction — Overflow mode used for fixed-point operations
'Saturate' (default) | 'Wrap'

Overflow mode used for fixed-point operations. When the input is any integer or fixed-point data type,
the algorithm uses fixed-point arithmetic for internal calculations. This option does not apply when
the input data type is single or double.

OutputDataType — Method to determine data type of output corner metric
'Same as first input' (default) | 'Custom' | 'Full precision'

Method to determine data type of output corner metric.

• 'Same as first input'' — Sets the data type of the corner metric to match the data type of
pixelIn.

• 'Custom' — Sets the data type of the corner metric to match the data type defined in the
CustomOutputDataType property.

• 'Full precision'' — Computes internal and output data types using full precision rules. These
rules provide accurate fixed-point numerics and prevent quantization within the object. Bits are
added, as needed, to prevent rounding and overflow.

CustomOutputDataType — Data type for the output corner metric
numerictype(0,8,0) (default) | numerictype(signed,WL,FL)

Data type for the output corner metric, specified as numerictype(signed,WL,FL), where WL is
the word length and FL is the fraction length in bits. The object cases the corner metric to this data
type.

Dependencies

This property applies when you set OutputDataType to 'Custom'.

 visionhdl.CornerDetector

2-31

Usage

Syntax
[corner,ctrlOut] = corners(pixelIn,ctrlIn)
[corner,ctrlOut] = corners(pixelIn,thresh,ctrlIn)

Description

[corner,ctrlOut] = corners(pixelIn,ctrlIn) returns the metric that indicates whether
each pixel is a corner

[corner,ctrlOut] = corners(pixelIn,thresh,ctrlIn) specifies the threshold that
determines a corner as an input argument. This syntax applies for both Harris and FAST algorithms.
The threshold is interpreted differently for each algorithm. To enable this argument when using the
FAST algorithm, set the MinContrastSource property to 'Input port'. To enable this argument
when using the Harris algorithm, set the ThresholdSource property to 'Input port'.

This object uses a streaming pixel interface with a structure for frame control signals. This interface
enables the object to operate independently of image size and format, and to connect with other
Vision HDL Toolbox objects. The object accepts and returns a scalar pixel value and control signals as
a structure containing five signals. The control signals indicate the validity of each pixel and its
location in the frame. To convert a pixel matrix into a pixel stream and control signals, use the
visionhdl.FrameToPixels object. For a full description of the interface, see “Streaming Pixel
Interface”.

Input Arguments

pixelIn — Single image pixel
scalar

Single image pixel in a pixel stream, specified as a scalar value representing intensity.

double and single data types are supported for simulation, but not for HDL code generation.
Data Types: uint8 | uint16 | uint32 | int8 | int16 | int32 | fi | double | single

ctrlIn — Control signals accompanying input pixel stream
pixelcontrol structure

Control signals accompanying input pixel stream, specified as a pixelcontrol structure containing
five logical data type signals. The signals describe the validity of the pixel and its location in the
frame. For more details, see “Pixel Control Structure”.
Data Types: struct

thresh — Threshold that indicates a corner
nonnegative integer

Threshold that indicates a corner, specified as a nonnegative integer.

When you choose the FAST algorithm, each pixel in the circle is subtracted from the center pixel
value. Only those differences that exceed this threshold are used to determine if the center pixel is a
corner and to calculate the output metric. This value is cast to the same data type as pixelIn.

2 System Objects

2-32

When you choose the Harris algorithm, this value represents an approximation of the eigenvalues of
the Harris matrix calculated from the gradient results. The object returns a corner for pixels where
the eigenvalue metric exceeds this threshold. The Harris corner metrics are in the range of a fourth
power of the input pixel values. For example, for an 8-bit input pixel, the full-precision output size is
44 bits. This value is cast to the same data type as the output corner.

double and single data types are supported for simulation, but not for HDL code generation.

Dependencies

To enable this argument when you choose the FAST algorithm, set the MinContrastSource
property to 'Input port'.

To enable this argument when you choose the Harris algorithm, set the ThresholdSource property
to 'Input port'.
Data Types: single | double | uint8 | uint16 | uint32 | uint64 | fi

Output Arguments

corner — Metric that indicates whether pixel is corner
scalar

Metric that indicates whether the pixel is a corner, returned as a scalar. The type is determined by
the OutputDataType property. When the pixel is not a corner, the object returns zero for this value.

For corners detected with the FAST algorithm, this value is a contrast metric computed by using the
sum-of-absolute-difference (SAD) of the pixels around the circle with the center pixel value. The
metric includes only those differences that exceed the threshold.

For corners detected with the Harris algorithm, this value is the approximation of the eigenvalues of
the Harris matrix calculated from the gradient results.

double and single data types are supported for simulation, but not for HDL code generation.
Data Types: uint8 | uint16 | uint32 | int8 | int16 | int32 | fi | double | single

ctrlOut — Control signals accompanying output pixel stream
pixelcontrol structure

Control signals accompanying output the pixel stream, returned as a pixelcontrol structure
containing five logical data type signals. The signals describe the validity of the pixel and its
location in the frame. For more details, see “Pixel Control Structure”.
Data Types: struct

Object Functions
To use an object function, specify the System object as the first input argument. For example, to
release system resources of a System object named obj, use this syntax:

release(obj)

Common to All System Objects
step Run System object algorithm

 visionhdl.CornerDetector

2-33

release Release resources and allow changes to System object property values and input
characteristics

reset Reset internal states of System object

Algorithms
This object implements the algorithms described on the Corner Detector block reference page.

See Also
Blocks
Corner Detector

Objects
visionhdl.FrameToPixels

Introduced in R2020a

2 System Objects

2-34

visionhdl.Closing
Package: visionhdl

Morphological closing of binary pixel stream

Description
The visionhdl.Closing System object performs morphological dilation, and then morphological
erosion, by using the same neighborhood for both calculations. The object operates on a stream of
binary intensity values.

To morphologically close a binary pixel stream:

1 Create the visionhdl.Closing object and set its properties.
2 Call the object with arguments, as if it were a function.

To learn more about how System objects work, see What Are System Objects?.

Creation
Syntax
mclose = visionhdl.Closing
mclose = visionhdl.Closing(Name,Value)
[pixelOut,ctrlOut] = mclose(pixelIn,ctrlIn)

Description

mclose = visionhdl.Closing returns a System object, that performs morphological closing on a
binary pixel stream.

mclose = visionhdl.Closing(Name,Value) sets properties using one or more name-value
arguments. Enclose each property name in quotes. For example,
'Neighborhood',getnhood(strel('disk',4)) specifies a 4-by-4 disk-pattern neighborhood.

Properties
Unless otherwise indicated, properties are nontunable, which means you cannot change their values
after calling the object. Objects lock when you call them, and the release function unlocks them.

If a property is tunable, you can change its value at any time.

For more information on changing property values, see System Design in MATLAB Using System
Objects.

Neighborhood — Pixel neighborhood
[0,1,0;1,1,1;0,1,0] (default) | vector or matrix of binary values

Pixel neighborhood, specified as a vector or matrix of binary values.

 visionhdl.Closing

2-35

The object supports neighborhoods of up to 32-by-32 pixels. To use a structuring element, specify
Neighborhood as getnhood(strel(shape)), where shape is specified by the input arguments to
the strel function.

When you use multipixel vector input, the neighborhood must be at least two pixels in each
dimension.

LineBufferSize — Size of line memory buffer
2048 (default) | positive integer

Size of line memory buffer, specified as a positive integer. Choose a power of two that accommodates
the number of active pixels in a horizontal line. If you specify a value that is not a power of two, the
object uses the next largest power of two. The object allocates (n – 1)-by-LineBufferSize memory
locations to store the pixels, where n is the number of lines in the Neighborhood parameter value.

PaddingMethod — Method for padding boundary of input image
'Constant' (default) | 'None'

Method for padding the boundary of the input image, specified as one of these values.

• 'Constant' — The object pads the image with zeros for the dilation operation and with ones for
the erosion operation. These values prevent closing at the boundaries of the active frame.

• 'None' — Exclude padding logic. The object does not set the pixels outside the image frame to
any particular value. This option reduces the hardware resources used by the object and the
blanking required between frames but affects the accuracy of the output pixels at the edges of the
frame. To maintain pixel stream timing, the output frame is the same size as the input frame.
However, to avoid using pixels calculated from undefined padding values, mask off the n/2 pixels
around the edge of the frame for downstream operations, where n is the size of the operation
kernel. For details, see “Increase Throughput with Padding None”.

For more information about these methods, see “Edge Padding”.

Usage

Syntax
[pixelOut,ctrlOut] = mclose(pixelIn,ctrlIn)

Description

[pixelOut,ctrlOut] = mclose(pixelIn,ctrlIn) returns the next binary pixel value,
pixelOut, resulting from a morphological close operation on the neighborhood around each input
binary pixel, pixelIn.

Input Arguments

This object uses a streaming pixel interface with a structure for frame control signals. This interface
enables the object to operate independently of image size and format, and to connect with other
Vision HDL Toolbox objects. The object accepts and returns a scalar pixel value and control signals as
a structure containing five signals. The control signals indicate the validity of each pixel and its
location in the frame. To convert a pixel matrix into a pixel stream and control signals, use the
visionhdl.FrameToPixels object. For a full description of the interface, see “Streaming Pixel
Interface”.

2 System Objects

2-36

pixelIn — Input pixel
0 or false | 1 or true

Input pixel, specified as a logical value.
Data Types: logical

ctrlIn — Control signals accompanying input pixel stream
pixelcontrol structure

Control signals accompanying input pixel stream, specified as a pixelcontrol structure containing
five logical data type signals. The signals describe the validity of the pixel and its location in the
frame. For more details, see “Pixel Control Structure”.
Data Types: struct

Output Arguments

pixelOut — Output pixel
0 or false | 1 or true

Single output pixel transformed by a morphological operation, returned as a logical value.

ctrlOut — Control signals accompanying output pixel stream
pixelcontrol structure

Control signals accompanying output the pixel stream, returned as a pixelcontrol structure
containing five logical data type signals. The signals describe the validity of the pixel and its
location in the frame. For more details, see “Pixel Control Structure”.
Data Types: struct

Object Functions
To use an object function, specify the System object as the first input argument. For example, to
release system resources of a System object named obj, use this syntax:

release(obj)

Common to All System Objects
step Run System object algorithm
release Release resources and allow changes to System object property values and input

characteristics
reset Reset internal states of System object

Examples

Morphological Close

Perform morphological close on a thumbnail image.

Load a source image from a file. Select a portion of the image that matches the desired test size. This
source image contains pixel intensity values of uint8 data type. Apply a threshold to convert the
pixel data to binary values.

 visionhdl.Closing

2-37

frmOrig = imread('rice.png');
frmActivePixels = 64;
frmActiveLines = 48;
frmInput = frmOrig(1:frmActiveLines,1:frmActivePixels);
frmInput = frmInput>128;
figure
imshow(frmInput,'InitialMagnification',300)
title 'Input Image'

Create a serializer object and define inactive pixel regions. Set the number of inactive pixels
following each active line to at least double the horizontal size of the neighborhood. Set the number
of lines following each frame to at least double the vertical size of the neighborhood.

frm2pix = visionhdl.FrameToPixels(...
 'NumComponents',1, ...
 'VideoFormat','custom', ...
 'ActivePixelsPerLine',frmActivePixels, ...
 'ActiveVideoLines',frmActiveLines, ...
 'TotalPixelsPerLine',frmActivePixels+20, ...
 'TotalVideoLines',frmActiveLines+10, ...
 'StartingActiveLine',3, ...
 'FrontPorch',10);

Create a filter object.

 mclose = visionhdl.Closing(...
 'Neighborhood',getnhood(strel('disk',4)));

Serialize the test image by calling the serializer object. pixIn is a vector of intensity values. ctrlIn
is a vector of control signal structures.

[pixIn,ctrlIn] = frm2pix(frmInput);

Prepare to process pixels by preallocating output vectors.

[~,~,numPixelsPerFrame] = getparamfromfrm2pix(frm2pix);
pixOut = false(numPixelsPerFrame,1);
ctrlOut = repmat(pixelcontrolstruct,numPixelsPerFrame,1);

2 System Objects

2-38

For each pixel in the padded frame, compute the morphed value. Monitor the control signals to
determine latency of the object. The latency of a configuration depends on the number of active pixels
in a line and the size of the neighborhood

foundValIn = false;
foundValOut = false;
for p = 1:numPixelsPerFrame
 if (ctrlIn(p).valid && foundValIn==0)
 foundValIn = p;
 end
 [pixOut(p),ctrlOut(p)] = mclose(pixIn(p),ctrlIn(p));
 if (ctrlOut(p).valid && foundValOut==0)
 foundValOut = p;
 end
end
objLatency_cycles = foundValOut-foundValIn

objLatency_cycles = 540

Create a deserializer object with a format matching that of the serializer. Convert the pixel stream to
an image frame by calling the deserializer object. Display the resulting image.

pix2frm = visionhdl.PixelsToFrame(...
 'NumComponents',1, ...
 'VideoFormat','custom', ...
 'ActivePixelsPerLine',frmActivePixels, ...
 'ActiveVideoLines',frmActiveLines);
[frmOutput,frmValid] = pix2frm(pixOut,ctrlOut);
if frmValid
 figure
 imshow(frmOutput, 'InitialMagnification',300)
 title 'Output Image'
end

Algorithms
This object implements the algorithms described on the Closing block reference page.

 visionhdl.Closing

2-39

See Also
Objects
visionhdl.Dilation | visionhdl.Erosion | visionhdl.FrameToPixels |
visionhdl.Opening

Blocks
Closing

Functions
imclose

Introduced in R2015a

2 System Objects

2-40

visionhdl.GrayscaleClosing
Package: visionhdl

Morphological closing of grayscale pixel data

Description
visionhdl.GrayscaleClosing performs a morphological dilation operation, followed by a
morphological erosion operation, using the same neighborhood for both calculations. The object
operates on a stream of pixel intensity values. You can specify a neighborhood, or structuring
element, of up to 32×32 pixels. For line, square, or rectangle structuring elements more than 8 pixels
wide, the object uses the Van Herk algorithm to find the maximum and minimum. For structuring
elements less than 8 pixels wide, or that contain zero elements, the object implements a pipelined
comparison tree to find the maximum and minimum.

This object uses a streaming pixel interface with a structure for frame control signals. This interface
enables the object to operate independently of image size and format, and to connect with other
Vision HDL Toolbox objects. The object accepts and returns a scalar pixel value and control signals as
a structure containing five signals. The control signals indicate the validity of each pixel and its
location in the frame. To convert a pixel matrix into a pixel stream and control signals, use the
visionhdl.FrameToPixels object. For a full description of the interface, see “Streaming Pixel
Interface”.

Note Starting in R2016b, instead of using the step method to perform the operation defined by the
System object, you can call the object with arguments, as if it were a function. For example, y =
step(obj,x) and y = obj(x) perform equivalent operations.

Construction
C = visionhdl.GrayscaleClosing returns a System object, C, that performs morphological
closing on a pixel stream.

C = visionhdl.GrayscaleClosing(Name,Value) returns a System object, C, with additional
options specified by one or more Name,Value pair arguments. Name is a property name on page 2-
41 and Value is the corresponding value. Name must appear inside single quotes (''). You can
specify several name-value pair arguments in any order as Name1,Value1,...,NameN,ValueN.
Properties not specified retain their default values.

Properties
Neighborhood

Pixel neighborhood, specified as a vector or matrix of binary values.

The object supports neighborhoods of up to 32×32 pixels. To use a structuring element, specify
Neighborhood as getnhood(strel(shape)). The minimum neighborhood size is a 2×2 matrix, or
a 2×1 column vector. If the neighborhood is a row vector, it must be at least 8 columns wide and
contain no zeros.

 visionhdl.GrayscaleClosing

2-41

Default: ones(3,3)

LineBufferSize

Specify a power of two that accommodates the number of active pixels in a single horizontal line.

Size of line memory buffer, specified as a positive integer. Choose a power of two that accommodates
the number of active pixels in a horizontal line. If you specify a value that is not a power of two, the
object uses the next largest power of two. The object allocates (n – 1)-by-LineBufferSize memory
locations to store the pixels, where n is the number of lines in the Neighborhood parameter value.

Default: 2048

Methods

step Report closed pixel value based on neighborhood

Common to All System Objects
release Allow System object property value changes

Examples

Grayscale Morphological Closing

Perform morphological closing on a grayscale thumbnail image.

Load a source image from a file. Select a portion of the image matching the desired test size.

frmOrig = imread('rice.png');
frmActivePixels = 64;
frmActiveLines = 48;
frmInput = frmOrig(1:frmActiveLines,1:frmActivePixels);
imshow(frmInput,'InitialMagnification',300)
title 'Input Image'

2 System Objects

2-42

Create a serializer object and define the inactive pixel regions. Make the number of inactive pixels
following each active line at least double the horizontal size of the neighborhood. Make the number of
lines following each frame at least double the vertical size of the neighborhood.

frm2pix = visionhdl.FrameToPixels(...
 'NumComponents',1,...
 'VideoFormat','custom',...
 'ActivePixelsPerLine',frmActivePixels,...
 'ActiveVideoLines',frmActiveLines,...
 'TotalPixelsPerLine',frmActivePixels+20,...
 'TotalVideoLines',frmActiveLines+20,...
 'StartingActiveLine',3,...
 'FrontPorch',10);

Create a filter object.

mclose = visionhdl.GrayscaleClosing(...
 'Neighborhood',ones(5,5));

Serialize the test image by calling the serializer object. pixIn is a vector of intensity values. ctrlIn
is a vector of control signal structures.

Note: This syntax runs only in R2016b or later. If you are using an earlier release, replace each call
of an object with the equivalent step syntax. For example, replace myObject(x) with
step(myObject,x).

[pixIn,ctrlIn] = frm2pix(frmInput);

Prepare to process pixels by preallocating output vectors.

[~,~,numPixelsPerFrame] = getparamfromfrm2pix(frm2pix);
pixOut = uint8(zeros(numPixelsPerFrame,1));
ctrlOut = repmat(pixelcontrolstruct,numPixelsPerFrame,1);

For each pixel in the padded frame, compute the morphed value. Monitor the control signals to
determine the latency of the object. The latency of a configuration depends on the number of active
pixels in a line and the size of the neighborhood.

foundValIn = false;
foundValOut = false;
for p = 1:numPixelsPerFrame
 if (ctrlIn(p).valid && foundValIn==0)
 foundValIn = p;
 end
 [pixOut(p),ctrlOut(p)] = mclose(pixIn(p),ctrlIn(p));
 if (ctrlOut(p).valid && foundValOut==0)
 foundValOut = p;
 end
end
sprintf('object latency is %d cycles',foundValOut-foundValIn)

ans =
'object latency is 384 cycles'

Create a deserializer object with a format matching that of the serializer. Convert the pixel stream to
an image frame by calling the deserializer object. Display the resulting image.

pix2frm = visionhdl.PixelsToFrame(...
 'NumComponents',1,...

 visionhdl.GrayscaleClosing

2-43

 'VideoFormat','custom',...
 'ActivePixelsPerLine',frmActivePixels,...
 'ActiveVideoLines',frmActiveLines);
[frmOutput,frmValid] = pix2frm(pixOut,ctrlOut);
if frmValid
 figure
 imshow(frmOutput, 'InitialMagnification',300)
 title 'Output Image'
end

Algorithms
This object implements the algorithms described on the Grayscale Closing block reference page.

See Also
Grayscale Closing | imclose | visionhdl.FrameToPixels | visionhdl.GrayscaleDilation |
visionhdl.GrayscaleErosion | visionhdl.GrayscaleOpening

Introduced in R2016a

2 System Objects

2-44

step
System object: visionhdl.GrayscaleClosing
Package: visionhdl

Report closed pixel value based on neighborhood

Syntax
[pixelOut,ctrlOut] = step(close,pixelIn,ctrlIn)

Description

Note Starting in R2016b, instead of using the step method to perform the operation defined by the
System object, you can call the object with arguments, as if it were a function. For example, y =
step(obj,x) and y = obj(x) perform equivalent operations.

[pixelOut,ctrlOut] = step(close,pixelIn,ctrlIn) returns the next pixel value,
pixelOut, resulting from morphological closing on the neighborhood around each input pixel
intensity value, pixelIn.

This object uses a streaming pixel interface with a structure for frame control signals. This interface
enables the object to operate independently of image size and format, and to connect with other
Vision HDL Toolbox objects. The object accepts and returns a scalar pixel value and control signals as
a structure containing five signals. The control signals indicate the validity of each pixel and its
location in the frame. To convert a pixel matrix into a pixel stream and control signals, use the
visionhdl.FrameToPixels object. For a full description of the interface, see “Streaming Pixel
Interface”.

Note The System object performs an initialization the first time you call the step method. This
initialization locks nontunable properties and input specifications, such as dimensions, complexity,
and data type of the input data. If you change a nontunable property or an input specification, the
object issues an error. To change nontunable properties or inputs, first call the release method to
unlock the object.

Input Arguments
close — Morphological closer
visionhdl.GrayClosing System object

Specify a visionhdl.GrayClosing System object that you created and configured.

pixelIn — Input pixel
scalar

Single pixel, specified as a scalar value.

Supported data types:

 step

2-45

• uint8, uint16,uint32
• fixdt(0,N,M)
• double and single data types are supported for simulation, but not for HDL code generation.

ctrlIn — Control signals accompanying input pixel stream
pixelcontrol structure

Control signals accompanying input pixel stream, specified as a pixelcontrol structure containing
five logical data type signals. The signals describe the validity of the pixel and its location in the
frame. For more details, see “Pixel Control Structure”.
Data Types: struct

Output Arguments
pixelOut — Output pixel
scalar

Single pixel transformed by a morphological operation, returned as a scalar value.

The data type is the same as the data type of pixelIn.

ctrlOut — Control signals accompanying output pixel stream
pixelcontrol structure

Control signals accompanying output the pixel stream, returned as a pixelcontrol structure
containing five logical data type signals. The signals describe the validity of the pixel and its
location in the frame. For more details, see “Pixel Control Structure”.
Data Types: struct

Introduced in R2016a

2 System Objects

2-46

visionhdl.DemosaicInterpolator
Package: visionhdl

Construct full RGB pixel data from Bayer pattern pixels

Description
visionhdl.DemosaicInterpolator provides a Bayer pattern interpolation filter for streaming
video data. You can select a low complexity bilinear interpolation, or a moderate complexity gradient-
corrected bilinear interpolation. The object implements the calculations using hardware-efficient
algorithms for HDL code generation.

• The object performs bilinear interpolation on a 3×3 pixel window using only additions and bit
shifts.

• The object performs gradient correction on a 5×5 pixel window. The object implements the
calculation using bit shift, addition, and low order Canonical Signed Digit (CSD) multiply.

Note Starting in R2016b, instead of using the step method to perform the operation defined by the
System object, you can call the object with arguments, as if it were a function. For example, y =
step(obj,x) and y = obj(x) perform equivalent operations.

Construction
D = visionhdl.DemosaicInterpolator returns a System object, D, that interpolates R'G'B' data
from a Bayer pattern pixel stream.

D = visionhdl.DemosaicInterpolator(Name,Value) returns a System object, D, with
additional options specified by one or more Name,Value pair arguments. Name is a property name
and Value is the corresponding value. Name must appear inside single quotes (''). You can specify
several name-value pair arguments in any order as Name1,Value1,...,NameN,ValueN. Properties
not specified retain their default values.

Properties
InterpolationAlgorithm

Algorithm the object uses to calculate the missing pixel values.

• Bilinear — Average of the pixel values in the surrounding 3×3 neighborhood.
• Gradient-corrected linear (default) — Bilinear average, corrected for intensity gradient.

SensorAlignment

Color sequence of the pixels in the input stream.

Specify the sequence of R, G, and B pixels that correspond to the 2-by-2 block of pixels in the top-left
corner of the input image. Specify the sequence in left-to-right, top-to-bottom order. For instance, the
default value, RGGB, represents an image with this pattern.

 visionhdl.DemosaicInterpolator

2-47

LineBufferSize

Specify a power of two that accommodates the number of active pixels in a single horizontal line.

Choose a power of 2 that accommodates the number of active pixels in a horizontal line. If you specify
a value that is not a power of two, the object uses the next largest power of two. When you set
InterpolationAlgorithm to Bilinear, the object allocates 2-by-LineBufferSize memory
locations. When you set InterpolationAlgorithm to Gradient-corrected linear, the object
allocates 4-by-LineBufferSize memory locations.

Default: 2048

Methods
step Demosaic a Bayer pattern video stream

Common to All System Objects
release Allow System object property value changes

Examples

Demosaic a Bayer Pattern Image

This example constructs full RGB pixel data from a Bayer pattern thumbnail image.

Set the dimensions of the test image. Load the source image file. This image is in Bayer pattern: each
pixel is represented by one value, alternating green values with red and blue values. Then select a
portion of the image matching the desired test size. These offsets select the face of the woman in the
image.

frmActivePixels = 256;
frmActiveLines = 192;
frmOrig = imread('mandi.tif');
frmInput = frmOrig(900:899+frmActiveLines, 2350:2349+frmActivePixels);
figure
imshow(frmInput)
title 'Input Image'

2 System Objects

2-48

Create a serializer object and specify size of the inactive pixel regions.

frm2pix = visionhdl.FrameToPixels(...
 'NumComponents',1,...
 'VideoFormat','custom',...
 'ActivePixelsPerLine',frmActivePixels,...
 'ActiveVideoLines',frmActiveLines,...
 'TotalPixelsPerLine',frmActivePixels+10,...
 'TotalVideoLines',frmActiveLines+10,...
 'StartingActiveLine',6,...
 'FrontPorch',5);

Create an interpolator object. Specify the sequence of color values matching the 2-by-2 pixels in the
top-left corner of the image.

BayerInterpolator = visionhdl.DemosaicInterpolator(...
 'SensorAlignment', 'RGGB');

Serialize the test image. pixIn is a vector of pixel values. ctrlIn is a vector of control signal
structures.

Note: This syntax runs only in R2016b or later. If you are using an earlier release, replace each call
of an object with the equivalent step syntax. For example, replace myObject(x) with
step(myObject,x).

[pixIn,ctrlIn] = frm2pix(frmInput);

Set up variables, and generate the {R,G,B} triplet for each pixel in the stream. This example prints a
progress message every 32 lines.

[pixels,lines,numPixelsPerFrame] = getparamfromfrm2pix(frm2pix);
ctrlOut = repmat(pixelcontrolstruct,numPixelsPerFrame,1);
pixOut = zeros(numPixelsPerFrame,3,'uint8');
lineCount = 1;
for p = 1:numPixelsPerFrame
 if ctrlIn(p).hEnd
 lineCount = lineCount+1;

 visionhdl.DemosaicInterpolator

2-49

 if mod(lineCount,32)==0
 fprintf('Processing... line %d\n',lineCount)
 end
 end
 [pixOut(p,:),ctrlOut(p)] = BayerInterpolator(pixIn(p),ctrlIn(p));
end

Processing... line 32
Processing... line 64
Processing... line 96
Processing... line 128
Processing... line 160
Processing... line 192

Create a deserializer object with a format matching that of the serializer. Convert the pixel stream to
an image frame, and display the result.

pix2frm = visionhdl.PixelsToFrame(...
 'NumComponents',3,...
 'VideoFormat','custom',...
 'ActivePixelsPerLine',frmActivePixels,...
 'ActiveVideoLines',frmActiveLines);
[frmOutput,frmValid] = pix2frm(pixOut,ctrlOut);
if frmValid
 figure
 imshow(frmOutput)
 title 'Output Image'
end

Algorithms
This object implements the algorithms described on the Demosaic Interpolator block reference page.

See Also
Demosaic Interpolator | demosaic | visionhdl.FrameToPixels

2 System Objects

2-50

Introduced in R2015a

 visionhdl.DemosaicInterpolator

2-51

step
System object: visionhdl.DemosaicInterpolator
Package: visionhdl

Demosaic a Bayer pattern video stream

Syntax
[pixelOut,ctrlOut] = step(demosaic,pixelIn,ctrlIn)

Description

Note Starting in R2016b, instead of using the step method to perform the operation defined by the
System object, you can call the object with arguments, as if it were a function. For example, y =
step(obj,x) and y = obj(x) perform equivalent operations.

[pixelOut,ctrlOut] = step(demosaic,pixelIn,ctrlIn) interpolates the missing color
values of a Bayer pattern input pixel stream, and returns the next pixel value, pixelOut, as a vector
of R'G'B' values. pixelIn represents one pixel in a Bayer pattern image.

This object uses a streaming pixel interface with a structure for frame control signals. This interface
enables the object to operate independently of image size and format, and to connect with other
Vision HDL Toolbox objects. The object accepts and returns a scalar pixel value and control signals as
a structure containing five signals. The control signals indicate the validity of each pixel and its
location in the frame. To convert a pixel matrix into a pixel stream and control signals, use the
visionhdl.FrameToPixels object. For a full description of the interface, see “Streaming Pixel
Interface”.

Note The System object performs an initialization the first time you call the step method. This
initialization locks nontunable properties and input specifications, such as dimensions, complexity,
and data type of the input data. If you change a nontunable property or an input specification, the
object issues an error. To change nontunable properties or inputs, first call the release method to
unlock the object.

Input Arguments
demosaic — Interpolator
visionhdl.DemosaicInterpolator System object

Specify a visionhdl.DemosaicInterpolator System object that you created and configured.

pixelIn — Input pixel
scalar

Single pixel, specified as a scalar value.

Supported data types:

2 System Objects

2-52

• uint or int
• fixdt(0,N,0)
• double and single data types are supported for simulation, but not for HDL code generation.

ctrlIn — Control signals accompanying input pixel stream
pixelcontrol structure

Control signals accompanying input pixel stream, specified as a pixelcontrol structure containing
five logical data type signals. The signals describe the validity of the pixel and its location in the
frame. For more details, see “Pixel Control Structure”.
Data Types: struct

Output Arguments
pixelOut — Output pixel
scalar

Single pixel, returned as a vector of three values in R'G'B' color space.

The data type of pixelOut is the same as the data type of pixelIn.

ctrlOut — Control signals accompanying output pixel stream
pixelcontrol structure

Control signals accompanying output the pixel stream, returned as a pixelcontrol structure
containing five logical data type signals. The signals describe the validity of the pixel and its
location in the frame. For more details, see “Pixel Control Structure”.
Data Types: struct

Introduced in R2015a

 step

2-53

visionhdl.Dilation
Package: visionhdl

Morphological dilation of binary pixel data

Description
visionhdl.Dilation replaces each pixel with the local maximum of the neighborhood around the
pixel. The object operates on a stream of binary intensity values.

This object uses a streaming pixel interface with a structure for frame control signals. This interface
enables the object to operate independently of image size and format, and to connect with other
Vision HDL Toolbox objects. The object accepts and returns a scalar pixel value and control signals as
a structure containing five signals. The control signals indicate the validity of each pixel and its
location in the frame. To convert a pixel matrix into a pixel stream and control signals, use the
visionhdl.FrameToPixels object. For a full description of the interface, see “Streaming Pixel
Interface”.

Note Starting in R2016b, instead of using the step method to perform the operation defined by the
System object, you can call the object with arguments, as if it were a function. For example, y =
step(obj,x) and y = obj(x) perform equivalent operations.

Construction
D = visionhdl.Dilation returns a System object, D, that performs morphological dilation on a
binary video stream.

D = visionhdl.Dilation(Name,Value) returns a System object, D, with additional options
specified by one or more Name,Value pair arguments. Name is a property name on page 2-54 and
Value is the corresponding value. Name must appear inside single quotes (''). You can specify
several name-value pair arguments in any order as Name1,Value1,...,NameN,ValueN. Properties
not specified retain their default values.

Properties
Neighborhood

Pixel neighborhood, specified as a vector or matrix of binary values.

The object supports neighborhoods of up to 32-by-32 pixels. To use a structuring element, specify
Neighborhood as getnhood(strel(shape)), where shape is specified by the input arguments to
the strel function.

When you use multipixel vector input, the neighborhood must be at least two pixels in each
dimension.

Default: [0,1,0;1,1,1;0,1,0]

2 System Objects

2-54

LineBufferSize

Specify a power of two that accommodates the number of active pixels in a single horizontal line.

Size of line memory buffer, specified as a positive integer. Choose a power of two that accommodates
the number of active pixels in a horizontal line. If you specify a value that is not a power of two, the
object uses the next largest power of two. The object allocates (n – 1)-by-LineBufferSize memory
locations to store the pixels, where n is the number of lines in the Neighborhood parameter value.

Default: 2048

PaddingMethod

Select one of these methods for padding the boundary of the input image. For more information about
these methods, see “Edge Padding”.

• 'Constant' — The object pads the image with zeros. These values prevent dilation at the
boundaries of the active frame.

• 'None' — Exclude padding logic. The object does not set the pixels outside the image frame to
any particular value. This option reduces the hardware resources used by the object and the
blanking required between frames but affects the accuracy of the output pixels at the edges of the
frame. To maintain pixel stream timing, the output frame is the same size as the input frame.
However, to avoid using pixels calculated from undefined padding values, mask off the n/2 pixels
around the edge of the frame for downstream operations, where n is the size of the operation
kernel. For details, see “Increase Throughput with Padding None”.

Default: 'Constant'

Methods
step Report dilated pixel value based on neighborhood

Common to All System Objects
release Allow System object property value changes

Examples

Morphological Dilate

Perform morphological dilate on a thumbnail image.

Load a source image from a file. Select a portion of the image that matches the desired test size. This
source image contains uint8 pixel intensity values. Apply a threshold to convert to binary pixel data.

frmOrig = imread('rice.png');
frmActivePixels = 64;
frmActiveLines = 48;
frmInput = frmOrig(1:frmActiveLines,1:frmActivePixels);
frmInput = frmInput>128;
figure
imshow(frmInput,'InitialMagnification',300)
title 'Input Image'

 visionhdl.Dilation

2-55

Create a serializer object and define inactive pixel regions. Make the number of inactive pixels
following each active line at least double the horizontal size of the neighborhood. Make the number of
lines following each frame at least double the vertical size of the neighborhood.

frm2pix = visionhdl.FrameToPixels(...
 'NumComponents',1,...
 'VideoFormat','custom',...
 'ActivePixelsPerLine',frmActivePixels,...
 'ActiveVideoLines',frmActiveLines,...
 'TotalPixelsPerLine',frmActivePixels+20,...
 'TotalVideoLines',frmActiveLines+10,...
 'StartingActiveLine',3,...
 'FrontPorch',10);

Create a filter object.

 mdilate = visionhdl.Dilation(...
 'Neighborhood',getnhood(strel('disk',3)));

Serialize the test image by calling the serializer object. pixIn is a vector of intensity values. ctrlIn
is a vector of control signal structures.

Note: This object syntax runs only in R2016b or later. If you are using an earlier release, replace
each call of an object with the equivalent step syntax. For example, replace myObject(x) with
step(myObject,x).

[pixIn,ctrlIn] = frm2pix(frmInput);

Prepare to process pixels by preallocating output vectors.

[~,~,numPixelsPerFrame] = getparamfromfrm2pix(frm2pix);
pixOut = false(numPixelsPerFrame,1);
ctrlOut = repmat(pixelcontrolstruct,numPixelsPerFrame,1);

For each pixel in the padded frame, compute the morphed value. Monitor the control signals to
determine latency of the object. The latency of a configuration depends on the number of active pixels
in a line and the size of the neighborhood

foundValIn = false;
foundValOut = false;

2 System Objects

2-56

for p = 1:numPixelsPerFrame
 if (ctrlIn(p).valid && foundValIn==0)
 foundValIn = p;
 end
 [pixOut(p),ctrlOut(p)] = mdilate(pixIn(p),ctrlIn(p));
 if (ctrlOut(p).valid && foundValOut==0)
 foundValOut = p;
 end
end
sprintf('object latency is %d cycles',foundValOut-foundValIn)

ans =
'object latency is 184 cycles'

Create a deserializer object with a format matching that of the serializer. Convert the pixel stream to
an image frame by calling the deserializer object. Display the resulting image.

pix2frm = visionhdl.PixelsToFrame(...
 'NumComponents',1,...
 'VideoFormat','custom',...
 'ActivePixelsPerLine',frmActivePixels,...
 'ActiveVideoLines',frmActiveLines);
[frmOutput,frmValid] = pix2frm(pixOut,ctrlOut);
if frmValid
 figure
 imshow(frmOutput, 'InitialMagnification',300)
 title 'Output Image'
end

Algorithms
This object implements the algorithms described on the Dilation block reference page.

See Also
Dilation | imdilate | visionhdl.Erosion | visionhdl.FrameToPixels

Introduced in R2015a

 visionhdl.Dilation

2-57

step
System object: visionhdl.Dilation
Package: visionhdl

Report dilated pixel value based on neighborhood

Syntax
[pixelOut,ctrlOut] = step(dilate,pixelIn,ctrlIn)

Description

Note Starting in R2016b, instead of using the step method to perform the operation defined by the
System object, you can call the object with arguments, as if it were a function. For example, y =
step(obj,x) and y = obj(x) perform equivalent operations.

[pixelOut,ctrlOut] = step(dilate,pixelIn,ctrlIn) returns the next pixel value,
pixelOut, resulting from a morphological dilation operation on the neighborhood around each input
pixel, pixelIn.

This object uses a streaming pixel interface with a structure for frame control signals. This interface
enables the object to operate independently of image size and format, and to connect with other
Vision HDL Toolbox objects. The object accepts and returns a scalar pixel value and control signals as
a structure containing five signals. The control signals indicate the validity of each pixel and its
location in the frame. To convert a pixel matrix into a pixel stream and control signals, use the
visionhdl.FrameToPixels object. For a full description of the interface, see “Streaming Pixel
Interface”.

Note The System object performs an initialization the first time you call the step method. This
initialization locks nontunable properties and input specifications, such as dimensions, complexity,
and data type of the input data. If you change a nontunable property or an input specification, the
object issues an error. To change nontunable properties or inputs, first call the release method to
unlock the object.

Input Arguments
dilate — Morphological dilator
visionhdl.Dilation System object

Specify a visionhdl.Dilation System object that you created and configured.

pixelIn — Input pixel
0 or false | 1 or true

Input pixel, specified as a logical value.
Data Types: logical

2 System Objects

2-58

ctrlIn — Control signals accompanying input pixel stream
pixelcontrol structure

Control signals accompanying input pixel stream, specified as a pixelcontrol structure containing
five logical data type signals. The signals describe the validity of the pixel and its location in the
frame. For more details, see “Pixel Control Structure”.
Data Types: struct

Output Arguments
pixelOut — Output pixel
0 or false | 1 or true

Single output pixel transformed by a morphological operation, returned as a logical value.

ctrlOut — Control signals accompanying output pixel stream
pixelcontrol structure

Control signals accompanying output the pixel stream, returned as a pixelcontrol structure
containing five logical data type signals. The signals describe the validity of the pixel and its
location in the frame. For more details, see “Pixel Control Structure”.
Data Types: struct

Introduced in R2015a

 step

2-59

visionhdl.GrayscaleDilation
Package: visionhdl

Morphological dilation of grayscale pixel data

Description
visionhdl.GrayscaleDilation performs morphological dilation on a stream of pixel intensity
values. You can specify a neighborhood, or structuring element, of up to 32×32 pixels. For line,
square, or rectangle structuring elements more than 8 pixels wide, the object uses the Van Herk
algorithm to find the maximum. This algorithm uses only three comparators to find the maximums of
all the rows, then uses a comparison tree to find the maximum of the row results.

For structuring elements less than 8 pixels wide, or that contain zero elements, the object implements
a pipelined comparison tree for each row of the neighborhood. An additional comparison tree finds
the maximum value of the row results. If the structuring element contains zeros that mask off pixels,
the algorithm saves hardware resources by not implementing comparators for those pixel locations.

This object uses a streaming pixel interface with a structure for frame control signals. This interface
enables the object to operate independently of image size and format, and to connect with other
Vision HDL Toolbox objects. The object accepts and returns a scalar pixel value and control signals as
a structure containing five signals. The control signals indicate the validity of each pixel and its
location in the frame. To convert a pixel matrix into a pixel stream and control signals, use the
visionhdl.FrameToPixels object. For a full description of the interface, see “Streaming Pixel
Interface”.

Note Starting in R2016b, instead of using the step method to perform the operation defined by the
System object, you can call the object with arguments, as if it were a function. For example, y =
step(obj,x) and y = obj(x) perform equivalent operations.

Construction
D = visionhdl.GrayscaleDilation returns a System object, D, that performs morphological
dilation on a pixel stream.

D = visionhdl.GrayscaleDilation(Name,Value) returns a System object, D, with additional
options specified by one or more Name,Value pair arguments. Name is a property name and Value is
the corresponding value. Name must appear inside single quotes (''). You can specify several name-
value pair arguments in any order as Name1,Value1,...,NameN,ValueN. Properties not specified
retain their default values.

Properties
Neighborhood

Pixel neighborhood, specified as a vector or matrix of binary values.

The object supports neighborhoods of up to 32×32 pixels. To use a structuring element, specify
Neighborhood as getnhood(strel(shape)). The minimum neighborhood size is a 2×2 matrix, or

2 System Objects

2-60

a 2×1 column vector. If the neighborhood is a row vector, it must be at least 8 columns wide and
contain no zeros.

Default: ones(5,5)

LineBufferSize

Specify a power of two that accommodates the number of active pixels in a single horizontal line.

Size of line memory buffer, specified as a positive integer. Choose a power of two that accommodates
the number of active pixels in a horizontal line. If you specify a value that is not a power of two, the
object uses the next largest power of two. The object allocates (n – 1)-by-LineBufferSize memory
locations to store the pixels, where n is the number of lines in the Neighborhood parameter value.

Default: 2048

Methods
step Report dilated pixel value based on neighborhood

Common to All System Objects
release Allow System object property value changes

Examples

Grayscale Morphological Dilation

Perform morphological dilation on a grayscale thumbnail image.

Load a source image from a file. Select a portion of the image matching the desired test size.

frmOrig = imread('rice.png');
frmActivePixels = 64;
frmActiveLines = 48;
frmInput = frmOrig(1:frmActiveLines,1:frmActivePixels);
imshow(frmInput,'InitialMagnification',300)
title 'Input Image'

 visionhdl.GrayscaleDilation

2-61

Create a serializer object and define the inactive pixel regions. Make the number of inactive pixels
following each active line at least double the horizontal size of the neighborhood. Make the number of
lines following each frame at least double the vertical size of the neighborhood.

frm2pix = visionhdl.FrameToPixels(...
 'NumComponents',1,...
 'VideoFormat','custom',...
 'ActivePixelsPerLine',frmActivePixels,...
 'ActiveVideoLines',frmActiveLines,...
 'TotalPixelsPerLine',frmActivePixels+20,...
 'TotalVideoLines',frmActiveLines+20,...
 'StartingActiveLine',3,...
 'FrontPorch',10);

Create a filter object.

mdilate = visionhdl.GrayscaleDilation(...
 'Neighborhood',ones(4,4));

Serialize the test image by calling the serializer object. pixIn is a vector of intensity values. ctrlIn
is a vector of control signal structures.

Note: This syntax runs only in R2016b or later. If you are using an earlier release, replace each call
of an object with the equivalent step syntax. For example, replace myObject(x) with
step(myObject,x).

[pixIn,ctrlIn] = frm2pix(frmInput);

Prepare to process pixels by preallocating output vectors.

[~,~,numPixelsPerFrame] = getparamfromfrm2pix(frm2pix);
pixOut = uint8(zeros(numPixelsPerFrame,1));
ctrlOut = repmat(pixelcontrolstruct,numPixelsPerFrame,1);

For each pixel in the padded frame, compute the morphed value. Monitor the control signals to
determine the latency of the object. The latency of a configuration depends on the number of active
pixels in a line and the size of the neighborhood.

foundValIn = false;
foundValOut = false;
for p = 1:numPixelsPerFrame
 if (ctrlIn(p).valid && foundValIn==0)
 foundValIn = p;
 end
 [pixOut(p),ctrlOut(p)] = mdilate(pixIn(p),ctrlIn(p));
 if (ctrlOut(p).valid && foundValOut==0)
 foundValOut = p;
 end
end
sprintf('object latency is %d cycles',foundValOut-foundValIn)

ans =
'object latency is 104 cycles'

Create a deserializer object with a format matching that of the serializer. Convert the pixel stream to
an image frame by calling the deserializer object. Display the resulting image.

pix2frm = visionhdl.PixelsToFrame(...
 'NumComponents',1,...

2 System Objects

2-62

 'VideoFormat','custom',...
 'ActivePixelsPerLine',frmActivePixels,...
 'ActiveVideoLines',frmActiveLines);
[frmOutput,frmValid] = pix2frm(pixOut,ctrlOut);
if frmValid
 figure
 imshow(frmOutput, 'InitialMagnification',300)
 title 'Output Image'
end

Algorithms
This object implements the algorithms described on the Grayscale Dilation block reference page.

See Also
Grayscale Dilation | imdilate | visionhdl.FrameToPixels | visionhdl.GrayscaleErosion

Introduced in R2016a

 visionhdl.GrayscaleDilation

2-63

step
System object: visionhdl.GrayscaleDilation
Package: visionhdl

Report dilated pixel value based on neighborhood

Syntax
[pixelOut,ctrlOut] = step(dilate,pixelIn,ctrlIn)

Description

Note Starting in R2016b, instead of using the step method to perform the operation defined by the
System object, you can call the object with arguments, as if it were a function. For example, y =
step(obj,x) and y = obj(x) perform equivalent operations.

[pixelOut,ctrlOut] = step(dilate,pixelIn,ctrlIn) returns the next pixel value,
pixelOut, resulting from morphological dilation on the neighborhood around each input pixel
intensity value, pixelIn.

This object uses a streaming pixel interface with a structure for frame control signals. This interface
enables the object to operate independently of image size and format, and to connect with other
Vision HDL Toolbox objects. The object accepts and returns a scalar pixel value and control signals as
a structure containing five signals. The control signals indicate the validity of each pixel and its
location in the frame. To convert a pixel matrix into a pixel stream and control signals, use the
visionhdl.FrameToPixels object. For a full description of the interface, see “Streaming Pixel
Interface”.

Note The System object performs an initialization the first time you call the step method. This
initialization locks nontunable properties and input specifications, such as dimensions, complexity,
and data type of the input data. If you change a nontunable property or an input specification, the
object issues an error. To change nontunable properties or inputs, first call the release method to
unlock the object.

Input Arguments
dilate — Morphological dilator
visionhdl.GrayscaleDilation System object

Specify a visionhdl.GrayscaleDilation System object that you created and configured.

pixelIn — Input pixel
scalar

Single pixel, specified as a scalar value.

Supported data types:

2 System Objects

2-64

• uint8, uint16,uint32
• fixdt(0,N,M)
• double and single data types are supported for simulation, but not for HDL code generation.

ctrlIn — Control signals accompanying input pixel stream
pixelcontrol structure

Control signals accompanying input pixel stream, specified as a pixelcontrol structure containing
five logical data type signals. The signals describe the validity of the pixel and its location in the
frame. For more details, see “Pixel Control Structure”.
Data Types: struct

Output Arguments
pixelOut — Output pixel
scalar

Single pixel transformed by a morphological operation, returned as a scalar value.

The data type is the same as the data type of pixelIn.

ctrlOut — Control signals accompanying output pixel stream
pixelcontrol structure

Control signals accompanying output the pixel stream, returned as a pixelcontrol structure
containing five logical data type signals. The signals describe the validity of the pixel and its
location in the frame. For more details, see “Pixel Control Structure”.
Data Types: struct

Introduced in R2016a

 step

2-65

visionhdl.EdgeDetector
Package: visionhdl

Find edges of objects

Description
visionhdl.EdgeDetector finds the edges in a grayscale pixel stream using the Sobel, Prewitt, or
Roberts method. The object convolves the input pixels with derivative approximation matrices to find
the gradient of pixel magnitude along two orthogonal directions. It then compares the sum of the
squares of the gradients to a configurable threshold to determine if the gradients represent an edge.
The Sobel and Prewitt methods calculate the gradient in horizontal and vertical directions. The
Roberts method calculates the gradients at 45 and 135 degrees.

The object returns a binary image, as a stream of pixel values. A pixel value of 1 indicates that the
pixel is an edge. You can optionally enable output of the gradient values in the two orthogonal
directions at each pixel.

Note Starting in R2016b, instead of using the step method to perform the operation defined by the
System object, you can call the object with arguments, as if it were a function. For example, y =
step(obj,x) and y = obj(x) perform equivalent operations.

Construction
ED = visionhdl.EdgeDetector returns a System object, ED, that detects edges using the Sobel
method.

ED = visionhdl.EdgeDetector(Name,Value) returns a System object, ED, with additional
options specified by one or more Name,Value pair arguments. Name is a property name and Value is
the corresponding value. Name must appear inside single quotes (''). You can specify several name-
value pair arguments in any order as Name1,Value1,...,NameN,ValueN. Properties not specified
retain their default values.

Properties
Method

Edge detection algorithm.

Specify 'Sobel', 'Prewitt', or 'Roberts' method.

Default: 'Sobel'

BinaryImageOutputPort

Enable the Edge output of the step method.

When this property is true, the step method returns a binary pixel value representing whether the
object detected an edge at each location in the frame.

2 System Objects

2-66

Default: true

GradientComponentOutputPorts

Enable the G1 and G2 outputs of the step method.

When this property is true, the step method returns two values representing the gradients
calculated in two orthogonal directions at each pixel. Set the data type for this argument in the
GradientDataType property.

Default: false

ThresholdSource

Source for the gradient threshold value that indicates an edge.

Set this property to 'Input port'to set the threshold as an input argument to the step method.
When this property is set to 'Property', set the threshold in the Threshold property.

Default: 'Property'

Threshold

Gradient threshold value that indicates an edge, specified as a numeric scalar value.

The object compares the square of this to the sum of the squares of the gradients. The object casts
this value to the data type of the gradients. This property applies when you set ThresholdSource to
'Property'.

Default: 20

LineBufferSize

Specify a power of two that accommodates the number of active pixels in a single horizontal line.

Choose a power of two that accommodates the number of active pixels in a horizontal line. If you
specify a value that is not a power of two, the object uses the next largest power of two. The object
allocates (N - 1)-by-LineBufferSize memory locations to store the pixels, where N is the number of
lines in the differential approximation matrix. If you set the Method property to 'Sobel'or
'Prewitt', then N is 3. If you set the Method property to 'Roberts', then N is 2.

Default: 2048

PaddingMethod

Select one of these methods for padding the boundary of the input image. For more information about
these methods, see “Edge Padding”.

• 'Symmetric' — Set the value of the padding pixels to mirror the edge of the image. This option
prevents edges from being detected at the boundaries of the active frame.

• 'None' — Exclude padding logic. The object does not set the pixels outside the image frame to
any particular value. This option reduces the hardware resources used by the object and the
blanking required between frames but affects the accuracy of the output pixels at the edges of the
frame. To maintain pixel stream timing, the output frame is the same size as the input frame.
However, to avoid using pixels calculated from undefined padding values, mask off the n/2 pixels

 visionhdl.EdgeDetector

2-67

around the edge of the frame for downstream operations, where n is the size of the operation
kernel. For details, see “Increase Throughput with Padding None”.

Default: 'Symmetric'

RoundingMethod

Rounding mode used for fixed-point operations.

The object uses fixed-point arithmetic for internal calculations when the input is any integer or fixed-
point data type. This option does not apply when the input data type is single or double.

Default: Floor

OverflowAction

Overflow action used for fixed-point operations.

The object uses fixed-point arithmetic for internal calculations when the input is any integer or fixed-
point data type. This option does not apply when the input data type is single or double.

Default: Wrap

GradientDataType

Data type for the gradient output values, specified as numerictype(signed,WL,FL), where WL is
the word length and FL is the fraction length in bits.

• 'Full precision' (default) — Use full-precision rules based on the data type of the pixelIn
argument of the step method, and the coefficients of the derivative approximation matrices.

• 'custom' — Use the data type defined in theCustomGradientDataType property.

CustomGradientDataType

Data type for the gradient output values, specified as numerictype(signed,WL,FL), where WL is
the word length and FL is the fraction length in bits.

Default: numerictype(1,8,0)

Methods

step Detect edges at an image pixel

Common to All System Objects
release Allow System object property value changes

Examples

Edge Detection Using Sobel Method

Detect edges in a thumbnail image using the Sobel method.

2 System Objects

2-68

Import a test image.

frmInput = imread('rice.png');
[frmActivePixels,frmActiveLines] = size(frmInput);
figure
imshow(frmInput)
title 'Input Image'

Create a serializer and specify the size of inactive pixel regions.

frm2pix = visionhdl.FrameToPixels(...
 'NumComponents',1,...
 'VideoFormat','custom',...
 'ActivePixelsPerLine',frmActivePixels,...
 'ActiveVideoLines',frmActiveLines,...
 'TotalPixelsPerLine',frmActivePixels+10,...
 'TotalVideoLines',frmActiveLines+10,...
 'StartingActiveLine',6,...
 'FrontPorch',5);

Create an edge detection object with the default property values. The default detection method is
Sobel.

edgeDetectSobel = visionhdl.EdgeDetector();

Speed up simulation by enabling a simulation mode that uses code generation for the System object.

edgeDetectSobel.simulateUsing('Code generation');

Serialize the test image using the object you created. pixIn is a vector of intensity values. ctrlIn is
a vector of control signal structures. Preallocate vectors for the output signals.

 visionhdl.EdgeDetector

2-69

Note: This syntax runs only in R2016b or later. If you are using an earlier release, replace each call
of an object with the equivalent step syntax. For example, replace myObject(x) with
step(myObject,x).

[pixIn,ctrlIn] = frm2pix(frmInput);

[~,~,numPixelsPerFrame] = getparamfromfrm2pix(frm2pix);
ctrlOut = repmat(pixelcontrolstruct,numPixelsPerFrame,1);
edgeOut = false(numPixelsPerFrame,1);

For each pixel in the stream, compute whether it represents an edge.

for p = 1:numPixelsPerFrame
 [edgeOut(p),ctrlOut(p)] = edgeDetectSobel(pixIn(p),ctrlIn(p));
end

Create a deserializer with a format matching that of the serializer. Use the deserializer to convert the
output pixel stream to an image frame.

pix2frm = visionhdl.PixelsToFrame(...
 'NumComponents',1,...
 'VideoFormat','custom',...
 'ActivePixelsPerLine',frmActivePixels,...
 'ActiveVideoLines',frmActiveLines);

[frmOutput,frmValid] = pix2frm(edgeOut,ctrlOut);
if frmValid
 figure
 imshow(frmOutput)
 title 'Output Image'
end

2 System Objects

2-70

Algorithms
This object implements the algorithms described on the Edge Detector block reference page.

See Also
Edge Detector | edge | visionhdl.FrameToPixels

Topics
“Enhanced Edge Detection from Noisy Color Video”

Introduced in R2015a

 visionhdl.EdgeDetector

2-71

step
System object: visionhdl.EdgeDetector
Package: visionhdl

Detect edges at an image pixel

Syntax
[edge,ctrlOut] = step(detect_edges,pixelIn,ctrlIn)
[G1,G2,ctrlOut] = step(detect_edges,pixelIn,ctrlIn)
[edge,ctrlOut] = step(detect_edges,pixelIn,ctrlIn,thresh)

Description

Note Starting in R2016b, instead of using the step method to perform the operation defined by the
System object, you can call the object with arguments, as if it were a function. For example, y =
step(obj,x) and y = obj(x) perform equivalent operations.

[edge,ctrlOut] = step(detect_edges,pixelIn,ctrlIn) detects edges in the neighborhood
of pixelIn by computing the gradient in two orthogonal directions. The edge output argument is a
binary value indicating whether the sum of the squares of the gradients for the input pixel is above
the threshold indicating an edge.

[G1,G2,ctrlOut] = step(detect_edges,pixelIn,ctrlIn) detects edges in the
neighborhood of pixelIn by computing the gradient in two orthogonal directions. Use this syntax
when you set GradientComponentOutputPorts property to true. The G1 and G2 output
arguments are the gradients calculated in the two orthogonal directions. When you set the Method
property to 'Sobel' or 'Prewitt', the first argument is the vertical gradient, and the second
argument is the horizontal gradient. When you set the Method property to 'Roberts', the first
argument is the 45 degree gradient, and the second argument is the 135 degree gradient.

[edge,ctrlOut] = step(detect_edges,pixelIn,ctrlIn,thresh) detects edges in the
neighborhood of pixelIn by computing the gradient in two orthogonal directions. Use this syntax
when you set ThresholdSource property to 'InputPort'. The edge output argument is a binary
value indicating whether the sum of the squares of the gradients was above the threshold, thresh,
squared.

You can use any combination of the optional port syntaxes.

This object uses a streaming pixel interface with a structure for frame control signals. This interface
enables the object to operate independently of image size and format, and to connect with other
Vision HDL Toolbox objects. The object accepts and returns a scalar pixel value and control signals as
a structure containing five signals. The control signals indicate the validity of each pixel and its
location in the frame. To convert a pixel matrix into a pixel stream and control signals, use the
visionhdl.FrameToPixels object. For a full description of the interface, see “Streaming Pixel
Interface”.

2 System Objects

2-72

Note The System object performs an initialization the first time you call the step method. This
initialization locks nontunable properties and input specifications, such as dimensions, complexity,
and data type of the input data. If you change a nontunable property or an input specification, the
object issues an error. To change nontunable properties or inputs, first call the release method to
unlock the object.

Input Arguments
detect_edges — Edge detector
visionhdl.EdgeDetector System object

Specify a visionhdl.EdgeDetector System object that you created and configured.

pixelIn — Input pixel
scalar

Intensity of a single pixel, specified as a scalar value.

Supported data types:

• uint or int
• fixdt()
• double and single data types are supported for simulation, but not for HDL code generation.

You can simulate System objects with a multipixel streaming interface, but System objects that use
multipixel streams are not supported for HDL code generation. Use the equivalent blocks to generate
HDL code for multipixel algorithms.

ctrlIn — Control signals accompanying input pixel stream
pixelcontrol structure

Control signals accompanying input pixel stream, specified as a pixelcontrol structure containing
five logical data type signals. The signals describe the validity of the pixel and its location in the
frame. For more details, see “Pixel Control Structure”.
Data Types: struct

thresh — Threshold
scalar

Gradient threshold value that indicates an edge, specified as a scalar numeric value.

The object compares this value squared to the sum of the squares of the gradients. This argument is
accepted when you set ThresholdSource property to 'InputPort'.

Output Arguments
edge — Edge locations
scalar

Pixel value indicating an edge at this pixel, returned as a scalar binary value.

 step

2-73

G1 — Gradient in first direction
scalar

Gradient calculated in the first direction, returned as a scalar value.

This argument is returned when you set GradientComponentOutputPorts property to true. If you
set the Method property to 'Sobel' or 'Prewitt', this argument is the vertical gradient. When you
set the Method property to 'Roberts', this argument is the 45 degree gradient.

Configure the data type of the gradients by using the GradientComponentDataType and
CustomGradientComponent properties.

G2 — Gradient in second direction
scalar

Gradient calculated in the second direction, returned as a scalar value.

This argument is returned when you set GradientComponentOutputPorts property to true. If you
set the Method property to 'Sobel' or 'Prewitt', this argument is the horizontal gradient. When
you set the Method property to 'Roberts', this argument is the 135 degree gradient.

Configure the data type of the gradients by using the GradientComponentDataType and
CustomGradientComponent properties.

ctrlOut — Control signals accompanying output pixel stream
pixelcontrol structure

Control signals accompanying output the pixel stream, returned as a pixelcontrol structure
containing five logical data type signals. The signals describe the validity of the pixel and its
location in the frame. For more details, see “Pixel Control Structure”.
Data Types: struct

Introduced in R2015a

2 System Objects

2-74

visionhdl.Erosion
Package: visionhdl

Morphological erosion of binary pixel data

Description
visionhdl.Erosion replaces each pixel with the local minimum of the neighborhood around the
pixel. The object operates on a stream of binary intensity values.

This object uses a streaming pixel interface with a structure for frame control signals. This interface
enables the object to operate independently of image size and format, and to connect with other
Vision HDL Toolbox objects. The object accepts and returns a scalar pixel value and control signals as
a structure containing five signals. The control signals indicate the validity of each pixel and its
location in the frame. To convert a pixel matrix into a pixel stream and control signals, use the
visionhdl.FrameToPixels object. For a full description of the interface, see “Streaming Pixel
Interface”.

Note Starting in R2016b, instead of using the step method to perform the operation defined by the
System object, you can call the object with arguments, as if it were a function. For example, y =
step(obj,x) and y = obj(x) perform equivalent operations.

Construction
E = visionhdl.Erosion returns a System object, E, that performs morphological erosion on a
binary pixel stream.

E = visionhdl.Erosion(Name,Value) returns a System object, E, with additional options
specified by one or more Name,Value pair arguments. Name is a property name on page 2-75 and
Value is the corresponding value. Name must appear inside single quotes (''). You can specify
several name-value pair arguments in any order as Name1,Value1,...,NameN,ValueN. Properties
not specified retain their default values.

Properties
Neighborhood

Pixel neighborhood, specified as a vector or matrix of binary values.

The object supports neighborhoods of up to 32-by-32 pixels. To use a structuring element, specify
Neighborhood as getnhood(strel(shape)), where shape is specified by the input arguments to
the strel function.

When you use multipixel vector input, the neighborhood must be at least two pixels in each
dimension.

Default: ones(3,3)

 visionhdl.Erosion

2-75

LineBufferSize

Specify a power of two that accommodates the number of active pixels in a single horizontal line.

Size of line memory buffer, specified as a positive integer. Choose a power of two that accommodates
the number of active pixels in a horizontal line. If you specify a value that is not a power of two, the
object uses the next largest power of two. The object allocates (n – 1)-by-LineBufferSize memory
locations to store the pixels, where n is the number of lines in the Neighborhood parameter value.

Default: 2048

PaddingMethod

Select one of these methods for padding the boundary of the input image. For more information about
these methods, see “Edge Padding”.

• 'Constant' — The object pads the image with ones. These values prevent erosion at the
boundaries of the active frame.

• 'None' — Exclude padding logic. The object does not set the pixels outside the image frame to
any particular value. This option reduces the hardware resources used by the object and the
blanking required between frames but affects the accuracy of the output pixels at the edges of the
frame. To maintain pixel stream timing, the output frame is the same size as the input frame.
However, to avoid using pixels calculated from undefined padding values, mask off the n/2 pixels
around the edge of the frame for downstream operations, where n is the size of the operation
kernel. For details, see “Increase Throughput with Padding None”.

Default: 'Constant'

Methods
step Report eroded pixel value based on neighborhood

Common to All System Objects
release Allow System object property value changes

Examples

Morphological Erode

Perform morphological erode on a thumbnail image.

Load a source image from a file. Select a portion of the image that matches the desired test size. This
source image contains uint8 pixel intensity values. Apply a threshold to convert to binary pixel data.

frmOrig = imread('rice.png');
frmActivePixels = 64;
frmActiveLines = 48;
frmInput = frmOrig(1:frmActiveLines,1:frmActivePixels);
frmInput = frmInput>128;
figure
imshow(frmInput,'InitialMagnification',300)
title 'Input Image'

2 System Objects

2-76

Create a serializer object and define inactive pixel regions. Make the number of inactive pixels
following each active line at least double the horizontal size of the neighborhood. Make the number of
lines following each frame at least double the vertical size of the neighborhood.

frm2pix = visionhdl.FrameToPixels(...
 'NumComponents',1,...
 'VideoFormat','custom',...
 'ActivePixelsPerLine',frmActivePixels,...
 'ActiveVideoLines',frmActiveLines,...
 'TotalPixelsPerLine',frmActivePixels+20,...
 'TotalVideoLines',frmActiveLines+10,...
 'StartingActiveLine',3,...
 'FrontPorch',10);

Create a filter object.

 merode = visionhdl.Erosion(...
 'Neighborhood',ones(2,7));

Serialize the test image by calling the serializer object. pixIn is a vector of intensity values. ctrlIn
is a vector of control signal structures.

Note: This object syntax runs only in R2016b or later. If you are using an earlier release, replace
each call of an object with the equivalent step syntax. For example, replace myObject(x) with
step(myObject,x).

[pixIn,ctrlIn] = frm2pix(frmInput);

Prepare to process pixels by preallocating output vectors.

[~,~,numPixelsPerFrame] = getparamfromfrm2pix(frm2pix);
pixOut = false(numPixelsPerFrame,1);
ctrlOut = repmat(pixelcontrolstruct,numPixelsPerFrame,1);

For each pixel in the padded frame, compute the morphed value. Monitor the control signals to
determine latency of the object. The latency of a configuration depends on the number of active pixels
in a line and the size of the neighborhood

foundValIn = false;
foundValOut = false;

 visionhdl.Erosion

2-77

for p = 1:numPixelsPerFrame
 if (ctrlIn(p).valid && foundValIn==0)
 foundValIn = p;
 end
 [pixOut(p),ctrlOut(p)] = merode(pixIn(p),ctrlIn(p));
 if (ctrlOut(p).valid && foundValOut==0)
 foundValOut = p;
 end
end
sprintf('object latency is %d cycles',foundValOut-foundValIn)

ans =
'object latency is 102 cycles'

Create a deserializer object with a format matching that of the serializer. Convert the pixel stream to
an image frame by calling the deserializer object. Display the resulting image.

pix2frm = visionhdl.PixelsToFrame(...
 'NumComponents',1,...
 'VideoFormat','custom',...
 'ActivePixelsPerLine',frmActivePixels,...
 'ActiveVideoLines',frmActiveLines);
[frmOutput,frmValid] = pix2frm(pixOut,ctrlOut);
if frmValid
 figure
 imshow(frmOutput, 'InitialMagnification',300)
 title 'Output Image'
end

Algorithms
This object implements the algorithms described on the Erosion block reference page.

See Also
Erosion | imerode | visionhdl.Dilation | visionhdl.FrameToPixels

Introduced in R2015a

2 System Objects

2-78

step
System object: visionhdl.Erosion
Package: visionhdl

Report eroded pixel value based on neighborhood

Syntax
[pixelOut,ctrlOut] = step(erode,pixelIn,ctrlIn)

Description

Note Starting in R2016b, instead of using the step method to perform the operation defined by the
System object, you can call the object with arguments, as if it were a function. For example, y =
step(obj,x) and y = obj(x) perform equivalent operations.

[pixelOut,ctrlOut] = step(erode,pixelIn,ctrlIn) returns the next pixel value,
pixelOut, in the pixel stream resulting from a morphological erosion operation on the neighborhood
around each input pixel, pixelIn.

This object uses a streaming pixel interface with a structure for frame control signals. This interface
enables the object to operate independently of image size and format, and to connect with other
Vision HDL Toolbox objects. The object accepts and returns a scalar pixel value and control signals as
a structure containing five signals. The control signals indicate the validity of each pixel and its
location in the frame. To convert a pixel matrix into a pixel stream and control signals, use the
visionhdl.FrameToPixels object. For a full description of the interface, see “Streaming Pixel
Interface”.

Note The System object performs an initialization the first time you call the step method. This
initialization locks nontunable properties and input specifications, such as dimensions, complexity,
and data type of the input data. If you change a nontunable property or an input specification, the
object issues an error. To change nontunable properties or inputs, first call the release method to
unlock the object.

Input Arguments
erode — Morphological eroder
visionhdl.Erosion System object

Specify a visionhdl.Erosion System object that you created and configured.

pixelIn — Input pixel
0 or false | 1 or true

Input pixel, specified as a logical value.
Data Types: logical

 step

2-79

ctrlIn — Control signals accompanying input pixel stream
pixelcontrol structure

Control signals accompanying input pixel stream, specified as a pixelcontrol structure containing
five logical data type signals. The signals describe the validity of the pixel and its location in the
frame. For more details, see “Pixel Control Structure”.
Data Types: struct

Output Arguments
pixelOut — Output pixel
0 or false | 1 or true

Single output pixel transformed by a morphological operation, returned as a logical value.

ctrlOut — Control signals accompanying output pixel stream
pixelcontrol structure

Control signals accompanying output the pixel stream, returned as a pixelcontrol structure
containing five logical data type signals. The signals describe the validity of the pixel and its
location in the frame. For more details, see “Pixel Control Structure”.
Data Types: struct

Introduced in R2015a

2 System Objects

2-80

visionhdl.GrayscaleErosion
Package: visionhdl

Morphological erosion of grayscale pixel data

Description
visionhdl.GrayscaleErosion performs morphological erosion on a stream of pixel intensity
values. You can specify a neighborhood, or structuring element, of up to 32×32 pixels. For line,
square, or rectangle structuring elements more than 8 pixels wide, the object uses the Van Herk
algorithm to find the maximum. This algorithm uses only three comparators to find the maximums of
all the rows, then uses a comparison tree to find the maximum of the row results.

For structuring elements less than 8 pixels wide, or that contain zero elements, the object implements
a pipelined comparison tree for each row of the neighborhood. An additional comparison tree finds
the maximum value of the row results. If the structuring element contains zeros that mask off pixels,
the algorithm saves hardware resources by not implementing comparators for those pixel locations.

This object uses a streaming pixel interface with a structure for frame control signals. This interface
enables the object to operate independently of image size and format, and to connect with other
Vision HDL Toolbox objects. The object accepts and returns a scalar pixel value and control signals as
a structure containing five signals. The control signals indicate the validity of each pixel and its
location in the frame. To convert a pixel matrix into a pixel stream and control signals, use the
visionhdl.FrameToPixels object. For a full description of the interface, see “Streaming Pixel
Interface”.

Note Starting in R2016b, instead of using the step method to perform the operation defined by the
System object, you can call the object with arguments, as if it were a function. For example, y =
step(obj,x) and y = obj(x) perform equivalent operations.

Construction
E = visionhdl.GrayscaleErosion returns a System object, E, that performs a morphological
erosion on a pixel stream.

E = visionhdl.GrayscaleErosion(Name,Value) returns a System object, E, with additional
options specified by one or more Name,Value pair arguments. Name is a property name on page 2-
81 and Value is the corresponding value. Name must appear inside single quotes (''). You can
specify several name-value pair arguments in any order as Name1,Value1,...,NameN,ValueN.
Properties not specified retain their default values.

Properties
Neighborhood

Pixel neighborhood, specified as a vector or matrix of binary values.

The object supports neighborhoods of up to 32×32 pixels. To use a structuring element, specify
Neighborhood as getnhood(strel(shape)). The minimum neighborhood size is a 2×2 matrix, or

 visionhdl.GrayscaleErosion

2-81

a 2×1 column vector. If the neighborhood is a row vector, it must be at least 8 columns wide and
contain no zeros.

Default: ones(3,3)

LineBufferSize

Specify a power of two that accommodates the number of active pixels in a single horizontal line.

Size of line memory buffer, specified as a positive integer. Choose a power of two that accommodates
the number of active pixels in a horizontal line. If you specify a value that is not a power of two, the
object uses the next largest power of two. The object allocates (n – 1)-by-LineBufferSize memory
locations to store the pixels, where n is the number of lines in the Neighborhood parameter value.

Default: 2048

Methods
step Report eroded pixel value based on neighborhood

Common to All System Objects
release Allow System object property value changes

Examples

Grayscale Morphological Erosion

Perform morphological erosion on a grayscale thumbnail image.

Load a source image from a file. Select a portion of the image matching the desired test size.

frmOrig = imread('rice.png');
frmActivePixels = 64;
frmActiveLines = 48;
frmInput = frmOrig(1:frmActiveLines,1:frmActivePixels);
imshow(frmInput,'InitialMagnification',300)
title 'Input Image'

2 System Objects

2-82

Create a serializer object and define the inactive pixel regions. Make the number of inactive pixels
following each active line at least double the horizontal size of the neighborhood. Make the number of
lines following each frame at least double the vertical size of the neighborhood.

frm2pix = visionhdl.FrameToPixels(...
 'NumComponents',1,...
 'VideoFormat','custom',...
 'ActivePixelsPerLine',frmActivePixels,...
 'ActiveVideoLines',frmActiveLines,...
 'TotalPixelsPerLine',frmActivePixels+20,...
 'TotalVideoLines',frmActiveLines+20,...
 'StartingActiveLine',3,...
 'FrontPorch',10);

Create a filter object.

merode = visionhdl.GrayscaleErosion(...
 'Neighborhood',ones(2,5));

Serialize the test image by calling the serializer object. pixIn is a vector of intensity values. ctrlIn
is a vector of control signal structures.

Note: This syntax runs only in R2016b or later. If you are using an earlier release, replace each call
of an object with the equivalent step syntax. For example, replace myObject(x) with
step(myObject,x).

[pixIn,ctrlIn] = frm2pix(frmInput);

Prepare to process pixels by preallocating output vectors.

[~,~,numPixelsPerFrame] = getparamfromfrm2pix(frm2pix);
pixOut = uint8(zeros(numPixelsPerFrame,1));
ctrlOut = repmat(pixelcontrolstruct,numPixelsPerFrame,1);

For each pixel in the padded frame, compute the morphed value. Monitor the control signals to
determine the latency of the object. The latency of a configuration depends on the number of active
pixels in a line and the size of the neighborhood.

foundValIn = false;
foundValOut = false;
for p = 1:numPixelsPerFrame
 if (ctrlIn(p).valid && foundValIn==0)
 foundValIn = p;
 end
 [pixOut(p),ctrlOut(p)] = merode(pixIn(p),ctrlIn(p));
 if (ctrlOut(p).valid && foundValOut==0)
 foundValOut = p;
 end
end
sprintf('object latency is %d cycles',foundValOut-foundValIn)

ans =
'object latency is 107 cycles'

Create a deserializer object with a format matching that of the serializer. Convert the pixel stream to
an image frame by calling the deserializer object. Display the resulting image.

pix2frm = visionhdl.PixelsToFrame(...
 'NumComponents',1,...

 visionhdl.GrayscaleErosion

2-83

 'VideoFormat','custom',...
 'ActivePixelsPerLine',frmActivePixels,...
 'ActiveVideoLines',frmActiveLines);
[frmOutput,frmValid] = pix2frm(pixOut,ctrlOut);
if frmValid
 figure
 imshow(frmOutput, 'InitialMagnification',300)
 title 'Output Image'
end

Algorithms
This object implements the algorithms described on the Grayscale Erosion block reference page.

See Also
Grayscale Erosion | imerode | visionhdl.FrameToPixels | visionhdl.GrayscaleDilation

Introduced in R2016a

2 System Objects

2-84

step
System object: visionhdl.GrayscaleErosion
Package: visionhdl

Report eroded pixel value based on neighborhood

Syntax
[pixelOut,ctrlOut] = step(erode,pixelIn,ctrlIn)

Description

Note Starting in R2016b, instead of using the step method to perform the operation defined by the
System object, you can call the object with arguments, as if it were a function. For example, y =
step(obj,x) and y = obj(x) perform equivalent operations.

[pixelOut,ctrlOut] = step(erode,pixelIn,ctrlIn) returns the next pixel value,
pixelOut, resulting from a morphological erosion of the neighborhood around each input pixel
intensity value, pixelIn.

This object uses a streaming pixel interface with a structure for frame control signals. This interface
enables the object to operate independently of image size and format, and to connect with other
Vision HDL Toolbox objects. The object accepts and returns a scalar pixel value and control signals as
a structure containing five signals. The control signals indicate the validity of each pixel and its
location in the frame. To convert a pixel matrix into a pixel stream and control signals, use the
visionhdl.FrameToPixels object. For a full description of the interface, see “Streaming Pixel
Interface”.

Note The System object performs an initialization the first time you call the step method. This
initialization locks nontunable properties and input specifications, such as dimensions, complexity,
and data type of the input data. If you change a nontunable property or an input specification, the
object issues an error. To change nontunable properties or inputs, first call the release method to
unlock the object.

Input Arguments
erode — Morphological eroder
visionhdl.GrayscaleErosion System object

Specify a visionhdl.GrayscaleErosion System object that you created and configured.

pixelIn — Input pixel
scalar

Single pixel, specified as a scalar value.

Supported data types:

 step

2-85

• uint8, uint16,uint32
• fixdt(0,N,M)
• double and single data types are supported for simulation, but not for HDL code generation.

ctrlIn — Control signals accompanying input pixel stream
pixelcontrol structure

Control signals accompanying input pixel stream, specified as a pixelcontrol structure containing
five logical data type signals. The signals describe the validity of the pixel and its location in the
frame. For more details, see “Pixel Control Structure”.
Data Types: struct

Output Arguments
pixelOut — Output pixel
scalar

Single pixel transformed by a morphological operation, returned as a scalar value.

The data type is the same as the data type of pixelIn.

ctrlOut — Control signals accompanying output pixel stream
pixelcontrol structure

Control signals accompanying output the pixel stream, returned as a pixelcontrol structure
containing five logical data type signals. The signals describe the validity of the pixel and its
location in the frame. For more details, see “Pixel Control Structure”.
Data Types: struct

Introduced in R2016a

2 System Objects

2-86

visionhdl.FrameToPixels
Package: visionhdl

Convert frame-based video to pixel stream

Description
visionhdl.FrameToPixels converts color or grayscale frame-based video to a pixel stream and
control structure. The control structure indicates the validity of each pixel and its location in the
frame. The pixel stream format can include padding pixels around the active frame. You can configure
the frame and padding dimensions by selecting a common video format or specifying custom
dimensions. See “Streaming Pixel Interface” for details of the pixel stream format.

Use this object to generate input for a function targeted for HDL code generation. This block does not
support HDL code generation.

If your design converts frames to a pixel stream and later converts the stream back to frames, specify
the same video format for the FrameToPixels object and the PixelsToFrame object.

Note Starting in R2016b, instead of using the step method to perform the operation defined by the
System object, you can call the object with arguments, as if it were a function. For example, y =
step(obj,x) and y = obj(x) perform equivalent operations.

Construction
F2P = visionhdl.FrameToPixels returns a System object, F2P, that serializes a grayscale
1080×1920 frame into a 1080p pixel stream with standard padding around the active data.

F2P = visionhdl.FrameToPixels(Name,Value) returns a System object, F2P, with additional
options specified by one or more Name,Value pair arguments. Name is a property name on page 2-
87 and Value is the corresponding value. Name must appear inside single quotes (''). You can
specify several name-value pair arguments in any order as Name1,Value1,...,NameN,ValueN.
Properties not specified retain their default values.

Properties
NumComponents

Components of each pixel, specified as 1, 3, or 4. Set to 1 for grayscale video. Set to 3 for color video,
for example, {R,G,B} or {Y,Cb,Cr}. Set to 4 to use color with an alpha channel for transparency. The
default is 1. The visionhdl.FrameToPixels object returns a P-by-NumComponents matrix, where
P is the total number of pixels.

NumPixels

Number of pixels transferred on the streaming interface for each cycle, specified as 1, 4, or 8. The
default is 1. To enable multipixel streaming and increase throughput for high-resolution or high-
frame-rate video, set this property to 4 or 8. The visionhdl.FrameToPixels object returns a P-by-

 visionhdl.FrameToPixels

2-87

NumPixels matrix, where P is the total number of pixels. When you set NumPixels>1, you must set
the NumComponents property to 1.

Note You can simulate System objects with a multipixel streaming interface, but they are not
supported for HDL code generation. Use the equivalent blocks to generate HDL code for multipixel
algorithms.

VideoFormat

Dimensions of active and inactive regions of a video frame. To select a predefined format, specify the
VideoFormat property as one of the options in the first column of the table. For a custom format, set
VideoFormat to 'Custom', and specify the dimension properties as integers. The frame dimensions
are indicated in the diagram.

Video
Format

Active
Pixels Per
Line

Active
Video
Lines

Total
Pixels
Per Line

Total
Video
Lines

Starting
Active
Line

Ending
Active
Line

Front
Porch

Back
Porch

240p 320 240 402 324 1 240 44 38
480p 640 480 800 525 36 515 16 144
480pH 720 480 858 525 33 512 16 122
576p 720 576 864 625 47 622 12 132
720p 1280 720 1650 750 25 744 110 260
768p 1024 768 1344 806 10 777 24 296
1024p 1280 1024 1688 1066 42 1065 48 360

2 System Objects

2-88

Video
Format

Active
Pixels Per
Line

Active
Video
Lines

Total
Pixels
Per Line

Total
Video
Lines

Starting
Active
Line

Ending
Active
Line

Front
Porch

Back
Porch

1080p
(default)

1920 1080 2200 1125 42 1121 88 192

1200p 1600 1200 2160 1250 50 1249 64 496
2KCinem
a

2048 1080 2750 1125 42 1121 639 63

4KUHDTV 3840 2160 4400 2250 42 2201 88 472
8KUHDTV 7680 4320 8800 4500 42 4361 88 1032
Custom User-

defined
User-
defined

User-
defined

User-
defined

User-
defined

User-
defined

User-
defined

User-
defined

Note When using a custom format, the properties you enter for the active and inactive dimensions of
the image must add up to the total frame dimensions.

For the horizontal direction, TotalPixelsPerLine must be greater than or equal to FrontPorch +
ActivePixelsPerLine. The block calculates BackPorch = TotalPixelsPerLine − FrontPorch
− ActivePixelsPerLine.

For the vertical direction, TotalVideoLines must be greater than or equal to
StartingActiveLine + ActiveVideoLines − 1. The block calculates EndingActiveLine =
StartingActiveLine + ActiveVideoLines − 1.

If you specify a format that does not conform to these rules, the object reports an error.

Note When using a custom format, ActivePixelsPerLine must be greater than 1. Also, set the
horizontal blanking interval, or BackPorch + FrontPorch, according to these guidelines.

• The total of BackPorch + FrontPorch must be at least 2 times the largest kernel size of the
algorithm in the objects following the visionhdl.FrameToPixels object. If the kernel size is <
4, the total porch must be at least 8 pixels.

• The BackPorch must be at least 6 pixels. This parameter is the number of inactive pixels before
the first valid pixel in a frame.

Note When using multipixel streaming (NumPixels > 1) these requirements apply.

• The video format must have horizontal dimensions divisible by the NumPixels property value. The
horizontal dimensions are set by these properties: ActivePixelsPerLine,
TotalPixelsPerLine, FrontPorch, and BackPorch. Standard video protocols 480p, 720p,
1080p, and 4k UHD support NumPixels equal to 4 or 8.

• The minimum input frame size for multipixel streaming (either 4 or 8 pixels) is 18 rows-by-32
columns.

• Choose your kernel size and ActivePixelsPerLine such that (ActivePixelsPerLine)/
(NumPixels) is at least the kernel width.

 visionhdl.FrameToPixels

2-89

Methods

step Convert image frame to pixel stream

Common to All System Objects
release Allow System object property value changes

Examples

Convert Between Full-Frame and Pixel-Streaming Data

This example converts a custom-size grayscale image to a pixel stream. It uses the
visionhdl.LookupTable object to obtain the negative image. Then it converts the pixel-stream
back to a full-frame image.

Load the source image from a file. Select a portion of the image matching the desired test size.

frmOrig = imread('rice.png');
frmActivePixels = 64;
frmActiveLines = 48;
frmInput = frmOrig(1:frmActiveLines,1:frmActivePixels);
figure
imshow(frmInput,'InitialMagnification',300)
title 'Input Image'

Create a serializer object and specify size of inactive pixel regions.

frm2pix = visionhdl.FrameToPixels(...
 'NumComponents',1,...
 'VideoFormat','custom',...
 'ActivePixelsPerLine',frmActivePixels,...
 'ActiveVideoLines',frmActiveLines,...
 'TotalPixelsPerLine',frmActivePixels+10,...
 'TotalVideoLines',frmActiveLines+10,...
 'StartingActiveLine',6,...
 'FrontPorch',5);

2 System Objects

2-90

Create a lookup table (LUT) object to generate the negative of the input image.

tabledata = linspace(255,0,256);
inverter = visionhdl.LookupTable(tabledata);

Serialize the test image by calling the serializer object. pixIn is a vector of intensity values. ctrlIn
is a vector of control signal structures.

Note: This object syntax runs only in R2016b or later. If you are using an earlier release, replace
each call of an object with the equivalent step syntax. For example, replace myObject(x) with
step(myObject,x).

[pixIn,ctrlIn] = frm2pix(frmInput);

Prepare to process pixels by preallocating output vectors.

[~,~,numPixelsPerFrame] = getparamfromfrm2pix(frm2pix);
pixOut = zeros(numPixelsPerFrame,1,'uint8');
ctrlOut = repmat(pixelcontrolstruct,numPixelsPerFrame,1);

For each pixel in the stream, look up the negative of the pixel value.

for p = 1:numPixelsPerFrame
 [pixOut(p),ctrlOut(p)] = inverter(pixIn(p),ctrlIn(p));
end

Create a deserializer object with a format matching that of the serializer. Convert the pixel stream to
an image frame by calling the deserializer object. Display the resulting image.

pix2frm = visionhdl.PixelsToFrame(...
 'NumComponents',1,...
 'VideoFormat','custom',...
 'ActivePixelsPerLine',frmActivePixels,...
 'ActiveVideoLines',frmActiveLines);
[frmOutput,frmValid] = pix2frm(pixOut,ctrlOut);
if frmValid
 figure
 imshow(frmOutput,'InitialMagnification',300)
 title 'Output Image'
end

 visionhdl.FrameToPixels

2-91

See Also
Frame To Pixels | visionhdl.PixelsToFrame

Topics
“Pixel-Streaming Design in MATLAB”
“Streaming Pixel Interface”

Introduced in R2015a

2 System Objects

2-92

step
System object: visionhdl.FrameToPixels
Package: visionhdl

Convert image frame to pixel stream

Syntax
[pixels,ctrlOut] = step(F2P,frm)

Description

Note Starting in R2016b, instead of using the step method to perform the operation defined by the
System object, you can call the object with arguments, as if it were a function. For example, y =
step(obj,x) and y = obj(x) perform equivalent operations.

[pixels,ctrlOut] = step(F2P,frm) converts the input image matrix, frm, to a vector of pixel
values, pixels, and an associated vector of control structures, ctrlOut. The control structure
indicates the validity of each pixel and its location in the frame. The output pixels include padding
around the active image, specified by the VideoFormat property.

See “Streaming Pixel Interface” for details of the pixel stream format.

Note The System object performs an initialization the first time you call the step method. This
initialization locks nontunable properties and input specifications, such as dimensions, complexity,
and data type of the input data. If you change a nontunable property or an input specification, the
object issues an error. To change nontunable properties or inputs, first call the release method to
unlock the object.

Input Arguments
F2P — Serializer
visionhdl.FrameToPixels System object

Specify a visionhdl.PixelStreamAligner System object that you created and configured.

frm — Input image
matrix

Input image, specified as an ActiveVideoLines-by-ActivePixelsPerLine-by-NumComponents
matrix, where:

• ActiveVideoLines is the height of the active image
• ActivePixelsPerLine is the width of the active image
• NumComponents is the number of components used to express a single pixel

 step

2-93

Set the size of the active image using the VideoFormat property. If the dimensions of frm do not
match that specified by VideoFormat, the object returns a warning.

Supported data types:

• uint or int
• fixdt()
• logical
• double or single

Output Arguments
pixels — Pixel values
matrix

Pixel values, returned as a P-by-NumComponents matrix or P-by-NumPixels matrix, where:

• P is the total number of pixels in the padded image, calculated as TotalPixelsPerLine ×
TotalVideoLines.

• NumComponents is the number of components used to express a single pixel.
• NumPixels is the number of pixels transferred on the streaming interface per cycle. When

NumPixels is greater than 1, you must set NumComponents to 1.

Note You can simulate System objects with a multipixel streaming interface, but they are not
supported for HDL code generation. Use the equivalent blocks to generate HDL code for
multipixel algorithms.

Set the size of the padded image using the VideoFormat property. The data type of the pixel values
is the same as im.

ctrlOut — Pixel stream control signals
vector of structures

Control structures associated with the output pixels, returned as a P-by-1 vector. P is the total
number of pixels in the padded image, calculated as TotalPixelsPerLine × TotalVideoLines.
Each structure contains five control signals indicating the validity of the pixel and its location in the
frame. For multipixel streaming, the control signals apply to each set of NumPixels values. See
“Pixel Control Structure”.

Introduced in R2015a

2 System Objects

2-94

visionhdl.GammaCorrector
Package: visionhdl

Apply or remove gamma correction

Description
visionhdl.GammaCorrector applies or removes gamma correction on a stream of pixels. Gamma
correction adjusts linear pixel values so that the modified values fit a curve. The de-gamma operation
performs the opposite operation to obtain linear pixel values.

To apply or remove gamma correction:

1 Create the visionhdl.GammaCorrector object and set its properties.
2 Call the object with arguments, as if it were a function.

To learn more about how System objects work, see What Are System Objects?.

Creation

Syntax
corrector = visionhdl.GammaCorrector
corrector = visionhdl.GammaCorrector(Name,Value)
corrector = visionhdl.GammaCorrector(operation,gammaValue,Name,Value)

Description

corrector = visionhdl.GammaCorrector returns a System object that applies default gamma
correction on a stream of pixels.

corrector = visionhdl.GammaCorrector(Name,Value) returns a gamma correction System
object, corrector, with properties set using one or more name-value pairs. Enclose each property
name in single quotes.
Example: corrector = visionhdl.GammaCorrector('LinearSegment',false) creates a
gamma correction object that does not use a linear segment in the gamma curve.

corrector = visionhdl.GammaCorrector(operation,gammaValue,Name,Value) returns a
gamma correction System object with the Correction property set to operation, the Gamma
property set to gammaValue, and additional options specified by one or more name-value pairs.

Properties
Unless otherwise indicated, properties are nontunable, which means you cannot change their values
after calling the object. Objects lock when you call them, and the release function unlocks them.

If a property is tunable, you can change its value at any time.

 visionhdl.GammaCorrector

2-95

For more information on changing property values, see System Design in MATLAB Using System
Objects.

Correction — Direction of intensity curve adjustment
'Gamma' (default) | 'De-gamma'

Direction of intensity curve adjustment, specified as either:

• 'Gamma' — Apply gamma correction.
• 'De-gamma' — Remove gamma correction.

Gamma — Target or current gamma value
2.2 (default) | scalar greater than or equal to 1

Target or current gamma value, specified as a scalar value greater than or equal to 1.

• When you set Correction to 'Gamma', set this property to the target gamma value of the output
video stream.

• When you set Correction to 'De-gamma', set this property to the gamma value of the input video
stream.

LinearSegment — Option to include a linear segment in the gamma curve
true (default) | false

Option to include a linear segment in the gamma curve, specified as true or false. When you set
this property to true, the gamma curve has a linear portion near the origin.

BreakPoint — Point where the gamma curve and linear segment meet
0.018 (default) | scalar pixel value between 0 and 1, exclusive

Point where the gamma curve and linear segment meet, specified as a scalar pixel value between 0
and 1, exclusive.
Dependency

To enable this property, set LinearSegment to true.

Usage

Syntax
[pixelOut,ctrlOut] = corrector(pixelIn,ctrlIn)

Description

[pixelOut,ctrlOut] = corrector(pixelIn,ctrlIn) returns the intensity value of a pixel
after gamma correction, and the control signals associated with the pixel. The input, pixelIn, and
output, pixelOut, are scalar values representing a single pixel.

This object uses a streaming pixel interface with a structure for frame control signals. This interface
enables the object to operate independently of image size and format, and to connect with other
Vision HDL Toolbox objects. The object accepts and returns a scalar pixel value and control signals as
a structure containing five signals. The control signals indicate the validity of each pixel and its
location in the frame. To convert a pixel matrix into a pixel stream and control signals, use the

2 System Objects

2-96

visionhdl.FrameToPixels object. For a full description of the interface, see “Streaming Pixel
Interface”.

Input Arguments

pixelIn — Input pixel
scalar

Intensity of a single pixel, specified as a scalar value. For fixed-point data types, the input word
length must be less than or equal to 16.

double and single data types are supported for simulation, but not for HDL code generation.
Data Types: single | double | int8 | int16 | uint8 | uint16 | fi

ctrlIn — Control signals accompanying input pixel stream
pixelcontrol structure

Control signals accompanying input pixel stream, specified as a pixelcontrol structure containing
five logical data type signals. The signals describe the validity of the pixel and its location in the
frame. For more details, see “Pixel Control Structure”.
Data Types: struct

Output Arguments

pixelOut — Output pixel
scalar

Gamma-corrected intensity of a single pixel, specified as a scalar value. The data type of the output
pixel is the same as the data type of pixelIn.

ctrlOut — Control signals accompanying output pixel stream
pixelcontrol structure

Control signals accompanying output the pixel stream, returned as a pixelcontrol structure
containing five logical data type signals. The signals describe the validity of the pixel and its
location in the frame. For more details, see “Pixel Control Structure”.
Data Types: struct

Object Functions
To use an object function, specify the System object as the first input argument. For example, to
release system resources of a System object named obj, use this syntax:

release(obj)

Common to All System Objects
step Run System object algorithm
release Release resources and allow changes to System object property values and input

characteristics
reset Reset internal states of System object

 visionhdl.GammaCorrector

2-97

Examples

Gamma Correction

This example performs gamma correction on a thumbnail image.

Load the source image from a file. Select a portion of the image matching the desired test size.

frmOrig = imread('rice.png');
frmActivePixels = 64;
frmActiveLines = 48;
frmInput = frmOrig(1:frmActiveLines,1:frmActivePixels);
figure
imshow(frmInput,'InitialMagnification',300)
title 'Input Image'

Create a serializer object and specify the size of inactive pixel regions.

frm2pix = visionhdl.FrameToPixels(...
 'NumComponents',1,...
 'VideoFormat','custom',...
 'ActivePixelsPerLine',frmActivePixels,...
 'ActiveVideoLines',frmActiveLines,...
 'TotalPixelsPerLine',frmActivePixels+10,...
 'TotalVideoLines',frmActiveLines+10,...
 'StartingActiveLine',6,...
 'FrontPorch',5);

Create a gamma corrector object.

 gammacorr = visionhdl.GammaCorrector(...
 'Gamma', 1.75);

Serialize the test image by calling the serializer object. pixIn is a vector of intensity values. ctrlIn
is a vector of control signal structures.

Note: This object syntax runs only in R2016b or later. If you are using an earlier release, replace
each call of an object with the equivalent step syntax. For example, replace myObject(x) with
step(myObject,x).

2 System Objects

2-98

[pixIn,ctrlIn] = frm2pix(frmInput);

Prepare to process pixels by preallocating output vectors.

[~,~,numPixelsPerFrame] = getparamfromfrm2pix(frm2pix);
pixOut = zeros(numPixelsPerFrame,1,'uint8');
ctrlOut = repmat(pixelcontrolstruct,numPixelsPerFrame,1);

For each pixel in the stream, compute the gamma corrected pixel value.

for p = 1:numPixelsPerFrame
 [pixOut(p),ctrlOut(p)] = gammacorr(pixIn(p),ctrlIn(p));
end

Create a deserializer object with a format matching that of the serializer. Convert the pixel stream to
an image frame by calling the deserializer object. Display the resulting image.

pix2frm = visionhdl.PixelsToFrame(...
 'NumComponents',1,...
 'VideoFormat','custom',...
 'ActivePixelsPerLine',frmActivePixels,...
 'ActiveVideoLines',frmActiveLines);
[frmOutput,frmValid] = pix2frm(pixOut,ctrlOut);
if frmValid
 figure
 imshow(frmOutput, 'InitialMagnification',300)
 title 'Output Image'
end

Algorithms
For the equations used for gamma correction, see Gamma Correction.

To save hardware resources, the object implements the gamma correction equation as a lookup table.
The lookup table maps each input pixel value to a corrected output value.

Latency

The latency of the visionhdl.GammaCorrector object is 2 cycles.

 visionhdl.GammaCorrector

2-99

See Also
Blocks
Gamma Corrector

Objects
vision.GammaCorrector | visionhdl.FrameToPixels

Functions
imadjust

Topics
“Pixel-Streaming Design in MATLAB”

Introduced in R2015a

2 System Objects

2-100

visionhdl.Histogram
Package: visionhdl

Frequency distribution

Description
The visionhdl.Histogram System object computes the frequency distribution of pixel values in a
video stream. You can configure the number and size of the bins. The object keeps a running
histogram until you clear the bin values and provides a read interface for accessing each bin.

To compute the frequency distribution of pixel values in a video stream:

1 Create the visionhdl.Histogram object and set its properties.
2 Call the object with arguments, as if it were a function.

To learn more about how System objects work, see What Are System Objects?.

Creation

Syntax
histo = visionhdl.Histogram
histo = visionhdl.Histogram(Name,Value)

Description

histo = visionhdl.Histogram returns a System object, histo, that computes image histograms
over 256 bins. Each bin value is 16 bits wide.

histo = visionhdl.Histogram(Name,Value) sets properties using one or more name-value
pairs. Enclose each property name in single quotes.

Properties
Unless otherwise indicated, properties are nontunable, which means you cannot change their values
after calling the object. Objects lock when you call them, and the release function unlocks them.

If a property is tunable, you can change its value at any time.

For more information on changing property values, see System Design in MATLAB Using System
Objects.

NumBins — Number of histogram bins
'256' (default) | '32' | '64' | '128' | '512' | '1024' | '2048' | '4096'

Number of histogram bins, specified as a string or character vector representing a power of two from
'32' to '4096'. Choose the number of bins depending on the input word length (WL). If the number

 visionhdl.Histogram

2-101

of bins is less than 2WL, the object truncates the least-significant bits of each pixel. If the number of
bins is greater than 2WL, some bins are impossible to hit, and when you synthesize your design it will
use more hardware resources than necessary.
Data Types: char | string

OutputDataType — Data type of histogram values
'Unsigned fixed point' (default) | 'double' | 'single'

Data type of histogram values, specified as 'Unsigned fixed point', 'double', or 'single'.

double and single data types are supported for simulation, but not for HDL code generation.
Data Types: char | string

OutputWordLength — Histogram bin word length
16 (default) | positive integer

Histogram bin word length, specified as a positive integer. If a bin overflows, the count saturates and
the object shows a warning.

Dependencies

To enable this property, set the OutputDataType property to 'Unsigned fixed point'.

Usage

Syntax
histo(~,~,~,~)
[dataOut,readRdy,validOut] = histo(pixelIn,ctrlIn,~,0)
[dataOut,readRdy,validOut] = histo(~,~,binAddr,0)
[dataOut,readRdy,validOut] = histo(~,~,binAddr,binReset)

Description

histo(~,~,~,~) performs an initial reset phase before processing input data. After object creation
or reset, call the object with dummy arguments for NumBins cycles before applying data. You do not
have to set the binReset argument to 1 (true) during this phase.

[dataOut,readRdy,validOut] = histo(pixelIn,ctrlIn,~,0) adds the input pixel,
pixelIn, to the internal histogram when the input control signals, ctrl indicate that the pixel is
valid. Call the object with this syntax for each pixel in a frame. The object returns readRdy set to 1
(true) when the histogram for the frame is complete. For this syntax, the object returns dataOut set
to 0 and validOut set to 0 (false).

This object uses a streaming pixel interface with a structure for frame control signals. This interface
enables the object to operate independently of image size and format and connect with other Vision
HDL Toolbox objects. The object accepts pixel data as integer, fixed-point, or floating-point data types.
The object accepts control signals as a structure containing five signals. The control signals indicate
the validity of each pixel and its location in the frame. To convert a pixel matrix into a pixel stream
and control signals, use the visionhdl.FrameToPixels object. For a full description of the
interface, see “Streaming Pixel Interface”.

2 System Objects

2-102

[dataOut,readRdy,validOut] = histo(~,~,binAddr,0) reads the histogram bin specified by
binAddr. Use this syntax after the object returns readRdy set to 1 (true). Call the object with this
syntax for each histogram bin. After two further calls to the object (input arguments can change), the
object returns dataOut set to the bin value at binAddr and validOut set to 1 (true).

[dataOut,readRdy,validOut] = histo(~,~,binAddr,binReset) resets the histogram values
when binReset is 1(true). You can initiate the reset while also specifying a binAddr to read.
Before applying more video data, complete the reset sequence by calling the object with dummy
arguments for NumBins cycles.

To visualize the sequence of operations, see the timing diagrams in the “Algorithms” on page 1-99
section of the Histogram block page.

Input Arguments

pixelIn — Single image pixel
unsigned scalar

Single image pixel, specified as an unsigned scalar.

double and single data types are supported for simulation, but not for HDL code generation.
Data Types: single | double | uint8 | uint16 | fixdt(0,N,0)

ctrlIn — Control signals accompanying input pixel stream
pixelcontrol structure

Control signals accompanying input pixel stream, specified as a pixelcontrol structure containing
five logical data type signals. The signals describe the validity of the pixel and its location in the
frame. For more details, see “Pixel Control Structure”.
Data Types: struct

binAddr — Bin number for reading histogram values
nonnegative integer

Bin number for reading histogram values, specified as a nonnegative integer. The object expects this
input after it has returned readRdy set to 1 (true). The data type must be
fixdt(0,log2(NumBins),0).
Data Types: fixdt(0,N,0)

binReset — Reset histogram bin values
true or 1 | false or 0

Reset histogram bin values, specified as 1 (true) or 0 (false). A binReset value of 1 (true)
triggers a RAM initialization sequence that resets the histogram bin values. It takes NumBins calls to
the object to clear all locations and ignores input arguments during this interval.
Data Types: logical

Output Arguments

readRdy — Indicates histogram bins available for read
true or 1 | false or 0

 visionhdl.Histogram

2-103

Indication that histogram bins are available for read, returned as 1 (true) or 0 (false). When the
object sets readRdy to 1 (true), the histogram bins are ready to read. The object returns readRdy
as 1 (true) two cycles after the final pixel of a frame.
Data Types: logical

dataOut — Bin value for requested address
nonnegative integer

Histogram bin value that corresponds to the requested address, binAddr, returned as a nonnegative
integer. The OutputDataType property specifies the data type for this value.

validOut — Indicates that histogram value is valid
true or 1 | false or 0

Indication that histogram value is valid, returned as 1 (true) or 0 (false). When the object returns
validOut as 1 (true), the histogram bin value, dataOut, is valid.
Data Types: logical

Object Functions
To use an object function, specify the System object as the first input argument. For example, to
release system resources of a System object named obj, use this syntax:

release(obj)

Common to All System Objects
step Run System object algorithm
release Release resources and allow changes to System object property values and input

characteristics
reset Reset internal states of System object

Examples

Compute Histogram of Image

Set the dimensions of the test image, and load a source image. Select a portion of the image
matching the desired test size.

frmActivePixels = 64;
frmActiveLines = 48;
frmOrig = imread('rice.png');
frmInput = frmOrig(1:frmActiveLines,1:frmActivePixels);
figure
imshow(frmInput,'InitialMagnification',300)
title 'Input Image'

2 System Objects

2-104

Create a serializer System object™ and define inactive pixel regions. Then, create a histogram
System object. The default setting is 256 bins.

frm2pix = visionhdl.FrameToPixels(...
 'NumComponents',1,...
 'VideoFormat','custom',...
 'ActivePixelsPerLine',frmActivePixels,...
 'ActiveVideoLines',frmActiveLines,...
 'TotalPixelsPerLine',frmActivePixels+10,...
 'TotalVideoLines',frmActiveLines+10,...
 'StartingActiveLine',6,...
 'FrontPorch',5);

histo = visionhdl.Histogram();
bins = str2double(histo.NumBins);

Serialize the test image. pixelIn is a vector of intensity values and ctrlIn is a vector of control
signal structures. Initialize output signals for the histogram results.

[pixelIn,ctrlIn] = frm2pix(frmInput);

[~,~,numPixelsPerFrame] = getparamfromfrm2pix(frm2pix);
readRdy = false(numPixelsPerFrame,1);
dataOut = zeros(bins-1,1,'uint8');
validOut = false(bins-1,1);
noOpCtrl = pixelcontrolstruct(0,0,0,0,0);
noAddr = uint8(0);
noReset = false;

Call the object with dummy input to initialize the bin memory.

for p = 1:bins
 histo(uint8(0),noOpCtrl,noAddr,noReset);
end

For each pixel in the padded frame, sort the pixel into a bin. The object returns readRdy as 1 (true)
two cycles after the active frame is complete.

for p = 1:numPixelsPerFrame
 [~,readRdy(p),~] = histo(pixelIn(p),ctrlIn(p),noAddr,noReset);
end

 visionhdl.Histogram

2-105

Once the frame is complete, as indicated by readRdy, read the bin values. The bin addresses are
0:bins-1. The object returns each bin value after two cycles of latency, so call the object bins+2
times.

if readRdy(numPixelsPerFrame)
 for p = 1:bins+2
 if (p < bins)
 % Read a normal bin
 [dataOut(p),~,validOut(p)] = histo(uint8(0),noOpCtrl,uint8(p-1),noReset);
 elseif (p == bins)
 % Read the final bin value and initiate binReset
 [dataOut(p),~,validOut(p)] = histo(uint8(0),noOpCtrl,uint8(p-1),true);
 elseif (p > bins)
 % Flush final bin values with two more calls
 [dataOut(p),~,validOut(p)] = histo(uint8(0),noOpCtrl,noAddr,noReset);
 end
 end
end

Graph the bin values.

dataOut = dataOut(validOut==1);
figure
bar(dataOut)
title('Histogram of Input Image')

Call the object with dummy input to clear the bin memory.

2 System Objects

2-106

for p = 1:bins
 histo(uint8(0),noOpCtrl,noAddr,noReset);
end

Algorithms
This object implements the algorithms described in the Algorithms section of the Histogram block
page.

See Also
Histogram | imhist | visionhdl.FrameToPixels

Introduced in R2015a

 visionhdl.Histogram

2-107

visionhdl.HVCounter
Package: visionhdl

Counts active pixel dimensions of streaming video

Description
The visionhdl.HVCounter System object analyzes a video stream and returns the current count of
lines per frame and pixels per line. The object also delays control signals of the pixel stream to
correspond with the count result. Use this object for algorithms that use the location of a pixel in a
frame or region of interest.

This waveform shows the pixel-stream control signals and the resulting counter outputs for the first
two lines of a video frame that has 10 pixels per line. The visionhdl.HVCounter System object has
a latency of two cycles to return the current counter values.

To count active lines-per-frame and active pixels-per-line of a pixel stream:

1 Create the visionhdl.HVCounter object and set its properties.
2 Call the object with arguments, as if it were a function.

To learn more about how System objects work, see What Are System Objects?.

Creation
Syntax
HVcnt = visionhdl.HVCounter
HVcnt = visionhdl.HVCounter(Name,Value)

Description

HVcnt = visionhdl.HVCounter returns a System object that counts the line and pixel location
within a frame or region-of-interest. An object that uses the default values for the properties can
count frames up to (511 pixels)-by-(355 lines).

HVcnt = visionhdl.HVCounter(Name,Value) returns a System object sets properties using one
or more name-value pairs. Enclose each property name in single quotes. For example, HVcnt =

2 System Objects

2-108

visionhdl.HVCounter('ActivePixelsPerLine',1920,'ActiveVideoLines',1080) creates
an object that can count frames up to (2047 pixels)-by-(2047 lines).

Properties
Unless otherwise indicated, properties are nontunable, which means you cannot change their values
after calling the object. Objects lock when you call them, and the release function unlocks them.

If a property is tunable, you can change its value at any time.

For more information on changing property values, see System Design in MATLAB Using System
Objects.

ActivePixelsPerLine — Maximum pixels per line
320 (default) | positive integer

Maximum pixels per line, specified as a positive integer. The object implements a pixel counter that
has ceil(log2(ActivePixelsPerLine)) bits. For example, for a frame with 320 pixels per line,
the counter has 9 bits. For a frame with 1024 pixels per line, the counter has 11 bits.

ActiveVideoLines — Maximum lines per frame
240 (default) | positive integer

Maximum lines per frame, specified as a positive integer. The object implements a line counter that
has ceil(log2(ActiveVideoLines)) bits. For example, for a frame with 240 pixels per line, the
counter has 8 bits. For a frame with 1080 pixels per line, the counter has 11 bits.

Usage

Syntax
[hCount,vCount,ctrlOut] = HVcnt(ctrlIn)

Description

[hCount,vCount,ctrlOut] = HVcnt(ctrlIn) updates horizontal and vertical location counters
hCount and vCount based on pixel-stream control signals, ctrlIn. The ctrlOut output is a delayed
version of ctrlIn that matches the timing of the counter values.

This System object uses a structure for frame control signals associated with each pixel of a pixel
stream. This interface enables the object to operate independently of image size and format. All
Vision HDL Toolbox System objects use the same streaming interface. The object accepts and returns
a structure containing five control signals. The control signals indicate the validity of each pixel and
its location in the frame. To convert a pixel matrix into a pixel stream and control signals, use the
visionhdl.FrameToPixels System object. For a full description of the interface, see “Streaming
Pixel Interface”.

Input Arguments

ctrlIn — Control signals accompanying input pixel stream
pixelcontrol structure

 visionhdl.HVCounter

2-109

Control signals accompanying input pixel stream, specified as a pixelcontrol structure containing
five logical data type signals. The signals describe the validity of the pixel and its location in the
frame. For more details, see “Pixel Control Structure”.
Data Types: struct

Output Arguments

hCount — Pixel location in line
positive integer

Pixel location within a line, returned as a positive integer. The object clears the pixel count at the
start of each line. If the input pixels per line exceeds the size of the counter, the object returns a
saturated value until the start of the next line.
Data Types: fi(0,ceil(log2(ActiveVideoLines)),0)

vCount — Line location in frame
positive integer

Line location within the frame or region of interest, returned as a positive integer. The object clears
the line count at the start of each frame. If the input lines per frame exceeds the size of the counter,
the object returns a saturated value until the start of the next frame.
Data Types: fi(0,ceil(log2(ActiveVideoLines)),0)

ctrlOut — Control signals accompanying output pixel stream
pixelcontrol structure

Control signals accompanying output the pixel stream, returned as a pixelcontrol structure
containing five logical data type signals. The signals describe the validity of the pixel and its
location in the frame. For more details, see “Pixel Control Structure”.
Data Types: struct

Object Functions
To use an object function, specify the System object as the first input argument. For example, to
release system resources of a System object named obj, use this syntax:

release(obj)

Common to All System Objects
step Run System object algorithm
release Release resources and allow changes to System object property values and input

characteristics
reset Reset internal states of System object

Examples

Count Pixel Locations in Streaming Video

Obtain the current pixel location within a region of interest (ROI).

2 System Objects

2-110

Load an input frame.

frmOrig = imread('coins.png');
[frmActiveLines,frmActivePixels] = size(frmOrig);
imshow(frmOrig)
title 'Input Image'

Create a serializer object and define inactive pixel regions.

frm2pix = visionhdl.FrameToPixels(...
 'NumComponents',1,...
 'VideoFormat','custom',...
 'ActivePixelsPerLine',frmActivePixels,...
 'ActiveVideoLines',frmActiveLines,...
 'TotalPixelsPerLine',frmActivePixels+20,...
 'TotalVideoLines',frmActiveLines+20,...
 'StartingActiveLine',3,...
 'FrontPorch',10);

Create an object to select a small region of interest. Define a rectangular region by the coordinates of
the top-left corner and the dimensions.

hPos = 80;
vPos = 60;
hSize = 15;
vSize = 20;
roicoin = visionhdl.ROISelector('Regions',[hPos vPos hSize vSize]);

Serialize the test image by calling the serializer object. pixIn is a vector of intensity values. ctrlIn
is a vector of control signal structures.

[pixIn,ctrlIn] = frm2pix(frmOrig);

 visionhdl.HVCounter

2-111

Prepare to process pixels by preallocating output vectors. The output frame from the ROI object is
the same size as the input frame, but the control signals indicate a different active region. The
counter block returns a delayed version of the control signals that aligns with the counter values.

[~,~,numPixelsPerFrame] = getparamfromfrm2pix(frm2pix);
pixROIOut = uint8(zeros(numPixelsPerFrame,1));
ctrlOut = repmat(pixelcontrolstruct,numPixelsPerFrame,1);
ctrlOut2 = repmat(pixelcontrolstruct,numPixelsPerFrame,1);

Write a function that creates and calls a visionhdl.HVCounter System object™. This object returns
horizontal and vertical count values that represent the current pixel location within the region of
interest. You can generate HDL code from this function.

function [hCount,vCount,ctrlOut] = pixelCount(ctrlIn)
%pixelCount
% Returns the current active pixel count per line, hCount, and the active
% line count, vCount, based on the pixel-stream control signals.
% ctrlIn and ctrlOut are structures that contain control signals associated
% with the pixel.
% The object implements counters that accommodate the next power-of-two above
% each property value. This configuration can count frames up to (512
% pixels)-by-(256 lines).
% You can generate HDL code from this function.

 persistent hvcount;
 if isempty(hvcount)
 hvcount = visionhdl.HVCounter(...
 'ActivePixelsPerLine',320,...
 'ActiveVideoLines',240);
 end

 [hCount,vCount,ctrlOut] = hvcount(ctrlIn);
end

For each pixel in the padded frame, apply the region mask, and then call the counter to indicate the
active pixel locations. If the input control signals indicate an inactive pixel at that location, the object
returns hCount and vCount set to zero.

oldvCount = 0;
for p = 1:numPixelsPerFrame
 [pixROIOut(p),ctrlOut(p)] = roicoin(pixIn(p),ctrlIn(p));
 [hCount,vCount,ctrlOut2(p)] = pixelCount(ctrlOut(p));
 if (vCount ~=0 && vCount ~= oldvCount)
 fprintf('\n Valid pixels in line #%d : ',vCount);
 oldvCount = vCount;
 end
 if hCount ~= 0
 fprintf('#%d ',hCount);
 end
end

 Valid pixels in line #1 : #1 #2 #3 #4 #5 #6 #7 #8 #9 #10 #11 #12 #13 #14 #15
 Valid pixels in line #2 : #1 #2 #3 #4 #5 #6 #7 #8 #9 #10 #11 #12 #13 #14 #15
 Valid pixels in line #3 : #1 #2 #3 #4 #5 #6 #7 #8 #9 #10 #11 #12 #13 #14 #15
 Valid pixels in line #4 : #1 #2 #3 #4 #5 #6 #7 #8 #9 #10 #11 #12 #13 #14 #15

2 System Objects

2-112

 Valid pixels in line #5 : #1 #2 #3 #4 #5 #6 #7 #8 #9 #10 #11 #12 #13 #14 #15
 Valid pixels in line #6 : #1 #2 #3 #4 #5 #6 #7 #8 #9 #10 #11 #12 #13 #14 #15
 Valid pixels in line #7 : #1 #2 #3 #4 #5 #6 #7 #8 #9 #10 #11 #12 #13 #14 #15
 Valid pixels in line #8 : #1 #2 #3 #4 #5 #6 #7 #8 #9 #10 #11 #12 #13 #14 #15
 Valid pixels in line #9 : #1 #2 #3 #4 #5 #6 #7 #8 #9 #10 #11 #12 #13 #14 #15
 Valid pixels in line #10 : #1 #2 #3 #4 #5 #6 #7 #8 #9 #10 #11 #12 #13 #14 #15
 Valid pixels in line #11 : #1 #2 #3 #4 #5 #6 #7 #8 #9 #10 #11 #12 #13 #14 #15
 Valid pixels in line #12 : #1 #2 #3 #4 #5 #6 #7 #8 #9 #10 #11 #12 #13 #14 #15
 Valid pixels in line #13 : #1 #2 #3 #4 #5 #6 #7 #8 #9 #10 #11 #12 #13 #14 #15
 Valid pixels in line #14 : #1 #2 #3 #4 #5 #6 #7 #8 #9 #10 #11 #12 #13 #14 #15
 Valid pixels in line #15 : #1 #2 #3 #4 #5 #6 #7 #8 #9 #10 #11 #12 #13 #14 #15
 Valid pixels in line #16 : #1 #2 #3 #4 #5 #6 #7 #8 #9 #10 #11 #12 #13 #14 #15
 Valid pixels in line #17 : #1 #2 #3 #4 #5 #6 #7 #8 #9 #10 #11 #12 #13 #14 #15
 Valid pixels in line #18 : #1 #2 #3 #4 #5 #6 #7 #8 #9 #10 #11 #12 #13 #14 #15
 Valid pixels in line #19 : #1 #2 #3 #4 #5 #6 #7 #8 #9 #10 #11 #12 #13 #14 #15
 Valid pixels in line #20 : #1 #2 #3 #4 #5 #6 #7 #8 #9 #10 #11 #12 #13 #14 #15

See Also
Blocks
HV Counter

Introduced in R2019a

 visionhdl.HVCounter

2-113

visionhdl.ImageFilter
Package: visionhdl

2-D FIR filtering

Description
visionhdl.ImageFilter performs two-dimensional finite-impulse-response (FIR) filtering on a
pixel stream. It supports the use of programmable filter coefficients.

Note Starting in R2016b, instead of using the step method to perform the operation defined by the
System object, you can call the object with arguments, as if it were a function. For example, y =
step(obj,x) and y = obj(x) perform equivalent operations.

Construction
F = visionhdl.ImageFilter returns a System object, F, that performs two-dimensional FIR
filtering on an input pixel stream.

F = visionhdl.ImageFilter(Name,Value) returns a 2-D FIR filter System object, F, with
additional options specified by one or more Name,Value pair arguments. Name is a property name
and Value is the corresponding value. Name must appear inside single quotes (''). You can specify
several name-value pair arguments in any order as Name1,Value1,...,NameN,ValueN. Properties
not specified retain their default values.

F = visionhdl.ImageFilter(coeff,lineSize,Name,Value) returns a 2-D FIR filter System
object, F, with the Coefficients property set to coeff, the LineBufferSize property to
lineSize, and additional options specified by one or more Name,Value pair arguments.

Input Arguments

coeff

Filter coefficients, specified as a matrix. Each dimension of the matrix must have at least 2 elements
and no more than 64 elements. This argument sets the Coefficients property value.

lineSize

Size of the line memory buffer, specified as a power of two that accommodates the number of active
pixels in a horizontal line. This argument sets the LineBufferSize property value.

Output Arguments

F

visionhdl.ImageFilter System object

2 System Objects

2-114

Properties
CoefficientsSource

Select the source for specifying the filter coefficients.

• 'Property' (default) — Select this value to specify filter coefficients using the Coefficients
property.

• 'Input port' — Select this value to specify filter coefficients using the coeff argument.

Coefficients

Coefficients of the filter, specified as a matrix. Each dimension of the matrix must have at least 2
elements and no more than 64 elements. This property applies when you set CoefficientsSource
to 'Property'.

double and single data types are supported for simulation, but not for HDL code generation.

Default: [1,0;0,-1]

PaddingMethod

Select one of these methods for padding the boundary of the input image.

• 'Constant' — Interpret pixels outside the image frame as having a constant value.
• 'Replicate' — Repeat the value of pixels at the edge of the image.
• 'Symmetric' — Set the value of the padding pixels to mirror the edge of the image.
• 'None' — Exclude padding logic. The object does not set the pixels outside the image frame to

any particular value. This option reduces the hardware resources used by the object and the
blanking required between frames but affects the accuracy of the output pixels at the edges of the
frame. To maintain pixel stream timing, the output frame is the same size as the input frame.
However, to avoid using pixels calculated from undefined padding values, mask off the n/2 pixels
around the edge of the frame for downstream operations, where n is the size of the operation
kernel. For details, see “Increase Throughput with Padding None”.

For more information about these methods, see “Edge Padding”.

Default: 'Constant'

PaddingValue

Constant value used to pad the boundary of the input image. This property applies when you set
PaddingMethod to 'Constant'. The object casts this value to the same data type as the input pixel.

Default: 0

LineBufferSize

Specify a power of two that accommodates the number of active pixels in a single horizontal line.

Choose a power of two that accommodates the number of active pixels in a horizontal line. If you
specify a value that is not a power of two, the object uses the next largest power of two. The object
allocates (coefficient rows – 1)-by-LineBufferSize memory locations to store the pixels.

 visionhdl.ImageFilter

2-115

Default: 2048

CoefficientsDataType

Select the method for determining the data type of the filter coefficients. This property applies when
you set CoefficientsSource to 'Property'.

• 'Same as first input'' (default) — Sets the data type of the coefficients to match the data
type of the pixelIn argument of the step method.

• 'custom' — Sets the data type of the coefficients to match the data type defined in the
CustomCoefficientsDataType property.

When converting the coefficients to the specified data type, the object rounds to the nearest
representable value and saturates on overflow.

CustomCoefficientsDataType

Data type for the filter coefficients, specified as numerictype(signed,WL,FL), where WL is the
word length and FL is the fraction length in bits. This property applies when you set
CoefficientsDataType to 'custom'.

Default: numerictype(true,16,15)

OutputDataType

Select the method for determining the data type of the output pixels.

• 'Same as first input' (default) — Sets the data type of the output pixels to match the data
type of the pixelIn argument of the step method.

• 'full precision' — Computes internal and output data types using full precision rules. These
rules provide accurate fixed-point numerics and prevent quantization within the object. Bits are
added, as needed, to prevent rounding and overflow.

• 'custom' — Sets the data type of the output pixels to match the data type you define in the
CustomOutputDataType property.

CustomOutputDataType

Data type for the output pixels, specified as numerictype(signed,WL,FL), where WL is the word
length and FL is the fraction length in bits. This property applies only when you set
OutputDataType to custom.

Default: numerictype(true,8,0)

OverflowAction

Overflow action used for fixed-point operations.

The object uses fixed-point arithmetic for internal calculations when the input is any integer or fixed-
point data type. This option does not apply when the input data type is single or double.

Default: Wrap

RoundingMethod

Rounding mode used for fixed-point operations.

2 System Objects

2-116

The object uses fixed-point arithmetic for internal calculations when the input is any integer or fixed-
point data type. This option does not apply when the input data type is single or double.

Default: Floor

Methods
step 2-D FIR filtering

Common to All System Objects
release Allow System object property value changes

Examples

Filter a Pixel-Stream

This example implements a 2-D blur filter on a thumbnail image.

Load the source image from a file. Select a portion of the image matching the desired test size.

frmOrig = imread('rice.png');
frmActivePixels = 64;
frmActiveLines = 48;
frmInput = frmOrig(1:frmActiveLines,1:frmActivePixels);
figure
imshow(frmInput,'InitialMagnification',300)
title 'Input Image'

Create a serializer object and specify the size of the inactive pixel regions.

frm2pix = visionhdl.FrameToPixels(...
 'NumComponents',1,...
 'VideoFormat','custom',...
 'ActivePixelsPerLine',frmActivePixels,...
 'ActiveVideoLines',frmActiveLines,...
 'TotalPixelsPerLine',frmActivePixels+10,...

 visionhdl.ImageFilter

2-117

 'TotalVideoLines',frmActiveLines+10,...
 'StartingActiveLine',6,...
 'FrontPorch',5);

Create a filter object.

 filt2d = visionhdl.ImageFilter(...
 'Coefficients',ones(2,2)/4,...
 'CoefficientsDataType','Custom',...
 'CustomCoefficientsDataType',numerictype(0,1,2),...
 'PaddingMethod','Symmetric');

Serialize the test image by calling the serializer object. pixIn is a vector of intensity values. ctrlIn
is a vector of control signal structures.

Note: This object syntax runs only in R2016b or later. If you are using an earlier release, replace
each call of an object with the equivalent step syntax. For example, replace myObject(x) with
step(myObject,x).

[pixIn,ctrlIn] = frm2pix(frmInput);

Prepare to process pixels by preallocating output vectors.

[~,~,numPixelsPerFrame] = getparamfromfrm2pix(frm2pix);
pixOut = zeros(numPixelsPerFrame,1,'uint8');
ctrlOut = repmat(pixelcontrolstruct,numPixelsPerFrame,1);

For each pixel in the padded frame, compute the filtered value. Monitor the control signals to
determine latency of the object. The latency of a filter configuration depends on:

• The number of active pixels in a line.
• The size of the filter kernel.
• Optimization of symmetric or duplicate coefficients.

foundValIn = false;
foundValOut = false;
for p = 1:numPixelsPerFrame
 if (ctrlIn(p).valid && foundValIn==0)
 foundValIn = p;
 end
 [pixOut(p),ctrlOut(p)] = filt2d(pixIn(p),ctrlIn(p));
 if (ctrlOut(p).valid && foundValOut==0)
 foundValOut = p;
 end
end
sprintf('object latency is %d cycles',foundValOut-foundValIn)

ans =
'object latency is 101 cycles'

Create a deserializer object with a format matching that of the serializer. Convert the pixel stream to
an image frame by calling the deserializer object. Display the resulting image.

pix2frm = visionhdl.PixelsToFrame(...
 'NumComponents',1,...
 'VideoFormat','custom',...
 'ActivePixelsPerLine',frmActivePixels,...

2 System Objects

2-118

 'ActiveVideoLines',frmActiveLines);
[frmOutput,frmValid] = pix2frm(pixOut,ctrlOut);
if frmValid
 figure
 imshow(frmOutput, 'InitialMagnification',300)
 title 'Output Image'
end

Algorithms
This object implements the algorithms described on the Image Filter block reference page.

See Also
Image Filter | imfilter | visionhdl.FrameToPixels

Introduced in R2015a

 visionhdl.ImageFilter

2-119

step
System object: visionhdl.ImageFilter
Package: visionhdl

2-D FIR filtering

Syntax
[pixelOut,ctrlOut] = step(filt,pixelIn,ctrlIn)
[pixelOut,ctrlOut] = step(filt,pixelIn,ctrlIn,coeff)

Description

Note Starting in R2016b, instead of using the step method to perform the operation defined by the
System object, you can call the object with arguments, as if it were a function. For example, y =
step(obj,x) and y = obj(x) perform equivalent operations.

[pixelOut,ctrlOut] = step(filt,pixelIn,ctrlIn) returns the next pixel, pixelOut, of the
filtered image resulting from applying the coefficients in the Coefficients property to the image
described by the input pixel stream, pixelIn.

[pixelOut,ctrlOut] = step(filt,pixelIn,ctrlIn,coeff) returns the next pixel,
pixelOut, of the filtered image resulting from applying the coefficients in the coeff argument to
the image described by the input pixel stream, pixelIn. The object samples the values from the
coeff argument only at the start of a frame and ignores any changes within a frame. To enable this
syntax, set the CoefficientsSource property to 'Input port'.

Note The System object performs an initialization the first time you call the step method. This
initialization locks nontunable properties and input specifications, such as dimensions, complexity,
and data type of the input data. If you change a nontunable property or an input specification, the
object issues an error. To change nontunable properties or inputs, first call the release method to
unlock the object.

Input Arguments
filt — Filter
visionhdl.ImageFilter System object

Specify a visionhdl.ImageFilter System object that you created and configured.

pixelIn — Input pixel
scalar

Single pixel, specified as a scalar value.

double and single data types are supported for simulation, but not for HDL code generation.

2 System Objects

2-120

You can simulate System objects with a multipixel streaming interface, but System objects that use
multipixel streams are not supported for HDL code generation. Use the equivalent blocks to generate
HDL code for multipixel algorithms.
Data Types: single | double | int8 | int16 | int32 | int64 | uint8 | uint16 | uint32 | uint64 |
fi

ctrlIn — Control signals accompanying input pixel stream
pixelcontrol structure

Control signals accompanying input pixel stream, specified as a pixelcontrol structure containing
five logical data type signals. The signals describe the validity of the pixel and its location in the
frame. For more details, see “Pixel Control Structure”.
Data Types: struct

coeff — Filter coefficients
matrix

Filter coefficients, specified as a matrix. Each dimension of the matrix must have at least 2 elements
and no more than 16 elements. The object samples the values from the coeff argument only at the
start of a frame and ignores any changes within a frame.

To enable this argument, set the CoefficientsSource property to 'Input port'.
Data Types: single | double | int8 | int16 | int32 | int64 | uint8 | uint16 | uint32 | uint64 |
fi

Output Arguments
pixelOut — Output pixel
scalar

Single filtered pixel, returned as a scalar value.

Configure the data type of the output pixel by using the OutputDataType and
CustomOutputDataType properties.

ctrlOut — Control signals accompanying output pixel stream
pixelcontrol structure

Control signals accompanying output the pixel stream, returned as a pixelcontrol structure
containing five logical data type signals. The signals describe the validity of the pixel and its
location in the frame. For more details, see “Pixel Control Structure”.
Data Types: struct

Introduced in R2015a

 step

2-121

visionhdl.ImageStatistics
Package: visionhdl

Mean, variance, and standard deviation

Description
visionhdl.ImageStatistics calculates the mean, variance, and standard deviation of streaming
video data. Each calculation is performed over all pixels in the input region of interest (ROI). The
object implements the calculations using hardware-efficient algorithms.

This object uses a streaming pixel interface with a structure for frame control signals. This interface
enables the object to operate independently of image size and format and connect with other Vision
HDL Toolbox objects. The object accepts pixel data as integer, fixed-point, or floating-point data types.
The object accepts control signals as a structure containing five signals. The control signals indicate
the validity of each pixel and its location in the frame. To convert a pixel matrix into a pixel stream
and control signals, use the visionhdl.FrameToPixels object. For a full description of the
interface, see “Streaming Pixel Interface”.

• To change the size and dimensions of the ROI, you can manipulate the input video stream control
signals. See “Regions of Interest” on page 1-113.

• The number of valid pixels in the input image affect the accuracy of the mean approximation. To
avoid approximation error, use an image that contains fewer than 64 pixels, a multiple of 64 pixels
up to 642 pixels, a multiple of 4096 pixels up to 643 pixels, or a multiple of 643 pixels up to 644

pixels. For details of the mean approximation, see “Algorithm” on page 1-110.
• The object calculates statistics over frames up to 644 (16,777,216) pixels in size.

Note Starting in R2016b, instead of using the step method to perform the operation defined by the
System object, you can call the object with arguments, as if it were a function. For example, y =
step(obj,x) and y = obj(x) perform equivalent operations.

Construction
S = visionhdl.ImageStatistics returns a System object, S, that calculates the mean, variance,
and standard deviation of each frame of a video stream.

S = visionhdl.ImageStatistics(Name,Value) returns a System object, S, with additional
options specified by one or more Name,Value pair arguments. Name is a property name on page 2-
122 and Value is the corresponding value. Name must appear inside single quotes (''). You can
specify several name-value pair arguments in any order as Name1,Value1,...,NameN,ValueN.
Properties not specified retain their default values.

Properties
mean

Calculate the mean of each input frame. If you set this property to false, the step method does not
return this output.

2 System Objects

2-122

Default: true

variance

Calculate the variance of each input frame. If you set this property to false, the step method does
not return this output.

Default: true

stdDev

Calculate the standard deviation of each input frame. If you set this property to false, the step
method does not return this output.

Default: true

Methods
step Calculate the contribution of one pixel to the mean, variance, and standard deviation of a video

stream

Common to All System Objects
release Allow System object property value changes

Examples

Compute Statistics of an Image

This example computes the mean, variance, and standard deviation of a thumbnail image.

Load the source image from a file. Select a portion of the image matching the desired test size.

frmOrig = imread('rice.png');
frmActivePixels = 64;
frmActiveLines = 48;
frmInput = frmOrig(1:frmActiveLines,1:frmActivePixels);
figure
imshow(frmInput,'InitialMagnification',300)
title 'Input Image'

 visionhdl.ImageStatistics

2-123

Create a serializer object and define inactive pixel regions.

frm2pix = visionhdl.FrameToPixels(...
 'NumComponents',1,...
 'VideoFormat','custom',...
 'ActivePixelsPerLine',frmActivePixels,...
 'ActiveVideoLines',frmActiveLines,...
 'TotalPixelsPerLine',frmActivePixels+10,...
 'TotalVideoLines',frmActiveLines+10,...
 'StartingActiveLine',6,...
 'FrontPorch',5);

Create an object that returns mean, variance, and standard deviation.

 stats = visionhdl.ImageStatistics();

Serialize the test image by calling the serializer object. pixIn is a vector of intensity values. ctrlIn
is a vector of control signal structures.

Note: This object syntax runs only in R2016b or later. If you are using an earlier release, replace
each call of an object with the equivalent step syntax. For example, replace myObject(x) with
step(myObject,x).

[pixIn,ctrlIn] = frm2pix(frmInput);

Prepare to process pixels by preallocating output vectors.

[~,~,numPixelsPerFrame] = getparamfromfrm2pix(frm2pix);
validOut = false(numPixelsPerFrame,1);
mean = zeros(numPixelsPerFrame,1,'uint8');
variance = zeros(numPixelsPerFrame,1,'uint8');
stddev = zeros(numPixelsPerFrame,1,'uint8');

For each pixel in the stream, increment the internal statistics.

for p = 1:numPixelsPerFrame
 [mean(p),variance(p),stddev(p),validOut(p)] = stats(pixIn(p),ctrlIn(p));
end

The results are valid when validOut is returned true.

2 System Objects

2-124

mean = mean(validOut==1)

mean = uint8
 125

variance = variance(validOut==1)

variance = uint8
 255

stddev = stddev(validOut==1)

stddev = uint8
 36

Algorithms
This object implements the algorithms described on the Image Statistics block reference page.

See Also
Image Statistics | mean2 | std2 | vision.Mean | vision.StandardDeviation |
vision.Variance | visionhdl.FrameToPixels

Introduced in R2015a

 visionhdl.ImageStatistics

2-125

step
System object: visionhdl.ImageStatistics
Package: visionhdl

Calculate the contribution of one pixel to the mean, variance, and standard deviation of a video
stream

Syntax
[mean,variance,stdDeviation,validOut] = step(statistics,pixelIn,ctrlIn)

Description

Note Starting in R2016b, instead of using the step method to perform the operation defined by the
System object, you can call the object with arguments, as if it were a function. For example, y =
step(obj,x) and y = obj(x) perform equivalent operations.

[mean,variance,stdDeviation,validOut] = step(statistics,pixelIn,ctrlIn)
incorporates the new pixel value, pixelIn, into calculations of video frame statistics. The control
signals associated with each pixel, ctrlIn, indicate the frame boundaries. When validOut is true,
the output values of mean, variance, and stdDeviation represent the statistics for the most
recent input frame completed. The number of statistics returned depends on the object property
settings.

This object uses a streaming pixel interface with a structure for frame control signals. This interface
enables the object to operate independently of image size and format and connect with other Vision
HDL Toolbox objects. The object accepts pixel data as integer, fixed-point, or floating-point data types.
The object accepts control signals as a structure containing five signals. The control signals indicate
the validity of each pixel and its location in the frame. To convert a pixel matrix into a pixel stream
and control signals, use the visionhdl.FrameToPixels object. For a full description of the
interface, see “Streaming Pixel Interface”.

Note The System object performs an initialization the first time you call the step method. This
initialization locks nontunable properties and input specifications, such as dimensions, complexity,
and data type of the input data. If you change a nontunable property or an input specification, the
object issues an error. To change nontunable properties or inputs, first call the release method to
unlock the object.

Input Arguments
statistics — Analyzer
visionhdl.ImageStatistics System object

Specify a visionhdl.ImageStatistics System object that you created and configured.

pixelIn — Input pixel
scalar

2 System Objects

2-126

Single pixel, specified as a scalar value.

Supported data types:

• uint8 or uint16
• fixdt(0,N,0), N = 8,9,...,16
• double and single data types are supported for simulation, but not for HDL code generation.

ctrlIn — Control signals accompanying input pixel stream
pixelcontrol structure

Control signals accompanying input pixel stream, specified as a pixelcontrol structure containing
five logical data type signals. The signals describe the validity of the pixel and its location in the
frame. For more details, see “Pixel Control Structure”.
Data Types: struct

Output Arguments
mean — Mean
scalar

Mean of the most recent frame of video input, returned as a scalar value.

The data type is the same as pixelIn.

variance — Variance
scalar

Variance of the most recent frame of video input, returned as a scalar value.

The data type is the same as pixelIn. The fixed-point output word length is double the input word
length.

stdDeviation — Standard deviation
scalar

Standard deviation of the most recent frame of video input, returned as a scalar value.

The data type is the same as pixelIn. Fixed-point output word length is double the input word
length.

validOut — Indicates valid output data
scalar logical

Validity of output statistics. When the object completes the calculations, it returns true. When this
output is true, the other output arguments are valid. Data type is logical.

Introduced in R2015a

 step

2-127

visionhdl.LineBuffer
Package: visionhdl

Store video lines and return neighborhood pixels

Description
The visionhdl.LineBuffer System object selects neighborhood pixels from streaming image data.
It handles video control signals and edge padding, and is pipelined for high-speed video designs. The
object outputs one column of the neighborhood at a time. To compose a neighborhood for further
processing, use the shiftEnable signal to store the output columns, including padding, in a shift
register. This object allows you to share the line buffer resources when your design performs multiple
operations on the same neighborhood.

The following waveform shows the visionhdl.LineBuffer object returning 5-by-1 pixel columns
that make up a 5-by-5 neighborhood. The time frame shown is at the beginning (top-left corner) of an
input frame. The output starts after the object has stored two (floor(M/2)) lines and is receiving
the start of the third line. The shiftEnable signal is asserted two cycles earlier than the output
ctrl.valid signal, which indicates that the first two (floor(M/2)) columns are exclusively
padding pixels. Similarly, shiftEnable stays high for two extra cycles at the end of the line.

To extract sliding pixel neighborhoods from a video stream:

1 Create the visionhdl.LineBuffer object and set its properties.
2 Call the object with arguments, as if it were a function.

To learn more about how System objects work, see What Are System Objects?.

2 System Objects

2-128

Creation
Syntax
linemem = visionhdl.LineBuffer(Name,Value)

Description

linemem = visionhdl.LineBuffer(Name,Value) returns a line buffer System object. Set
properties using name-value pairs. Enclose each property name in single quotes.
Example: linemem = visionhdl.LineBuffer('NeighborhoodSize',[5 5])

Properties
Unless otherwise indicated, properties are nontunable, which means you cannot change their values
after calling the object. Objects lock when you call them, and the release function unlocks them.

If a property is tunable, you can change its value at any time.

For more information on changing property values, see System Design in MATLAB Using System
Objects.

NeighborhoodSize — Size of output neighborhood
[3 3] (default) | 2-element row vector of integer dimensions

Size of output neighborhood to be formed, specified as a 2-element row vector of integer dimensions
[vertical horizontal]. The object returns a column vector of vertical elements. The horizontal
dimension is used to determine padding.

PaddingMethod — Method for padding the boundary of input image
'Symmetric' (default) | 'Constant' | 'Replicate' | 'None'

Select one of these methods for padding the boundary of the input image.

• 'Constant' — Interpret pixels outside the image frame as having a constant value.
• 'Replicate' — Repeat the value of pixels at the edge of the image.
• 'Symmetric' — Set the value of the padding pixels to mirror the edge of the image.
• 'None' — Exclude padding logic. The object does not set the pixels outside the image frame to

any particular value. This option reduces the hardware resources used by the object and the
blanking required between frames but affects the accuracy of the output pixels at the edges of the
frame. To maintain pixel stream timing, the output frame is the same size as the input frame.
However, to avoid using pixels calculated from undefined padding values, mask off the n/2 pixels
around the edge of the frame for downstream operations, where n is the size of the operation
kernel. For details, see “Increase Throughput with Padding None”.

For more information about these methods, see “Edge Padding”.

PaddingValue — Value used to pad boundary of input image
0 (default) | integer

Value used to pad the boundary of the input image, specified as an integer. The object casts this value
to the same data type as the input pixel.

 visionhdl.LineBuffer

2-129

Dependencies

This property is valid when you set PaddingMethod to 'Constant'.

LineBufferSize — Size of line memory buffer
2048 (default) | positive integer

Specify a power of two that accommodates the number of active pixels in a single horizontal line.

If you specify a value that is not a power of two, the object uses the next largest power of two.

Usage

Syntax
[pixelOut,ctrlOut,shiftEnable] = lineMem(pixelIn,ctrlIn)

Description

[pixelOut,ctrlOut,shiftEnable] = lineMem(pixelIn,ctrlIn) returns a column vector of
pixels in the kernel, and accompanying control signals.

This object uses a streaming pixel interface with a structure for frame control signals. This interface
enables the object to operate independently of image size and format, and to connect with other
Vision HDL Toolbox objects. The object accepts and returns a scalar pixel value and control signals as
a structure containing five signals. The control signals indicate the validity of each pixel and its
location in the frame. To convert a pixel matrix into a pixel stream and control signals, use the
visionhdl.FrameToPixels object. For a full description of the interface, see “Streaming Pixel
Interface”.

Input Arguments

You can simulate System objects with a multipixel streaming interface, but System objects that use
multipixel streams are not supported for HDL code generation. Use the equivalent blocks to generate
HDL code for multipixel algorithms.

pixelIn — Single image pixel
scalar

Single image pixel in a pixel stream, specified as a scalar value representing intensity.

double and single data types are supported for simulation, but not for HDL code generation.
Data Types: uint8 | uint16 | uint32 | int8 | int16 | int32 | fi | logical | double | single

ctrlIn — Control signals accompanying input pixel stream
pixelcontrol structure

Control signals accompanying input pixel stream, specified as a pixelcontrol structure containing
five logical data type signals. The signals describe the validity of the pixel and its location in the
frame. For more details, see “Pixel Control Structure”.
Data Types: struct

2 System Objects

2-130

Output Arguments

pixelOut — Single column of neighborhood
column vector

Single column neighborhood pixel values, returned as a of 1-by-M vector, where M is the vertical
neighborhood dimension. The output pixel data type is the same as the data type of the input pixels.

To compose a neighborhood for further processing, use the shiftEnable signal to store the output
columns, including padding, in a shift register.

Note HDL code generation is supported for small matrices, but matrix operations can impact
hardware performance and resource usage. Therefore, minimize how much your design operates on
an N-by-M neighborhood directly. You can :

• Separate a filter into vertical and horizontal components.
• Concatenate the neighborhood pixels into a N*M-by-1 vector.

These design suggestions also provide opportunities to add pipelining around each adder or
multiplier to increase synthesized clock speed and fit the design to DSP blocks on an FPGA.

Data Types: int8 | int16 | int32 | uint8 | uint16 | uint32 | logical | double | single

ctrlOut — Control signals accompanying output column
pixelcontrol structure

Control signals accompanying pixel stream, returned as a structure containing five logical signals.
The signals describe the validity of the center pixel of the column, and the location of that pixel within
the frame. See “Pixel Control Structure”.

Columns that contain only padding pixels do not assert ctrl.valid. The shiftEnable signal is
asserted for both padding and active columns.

Note For most of the frame, the object returns the input control signals that arrived with the bottom
pixel of the column. However, for the final floor(M/2) lines of each frame, the bottom pixel of the
column is a padding pixel, so the object generates output control signals. The object generates a
contiguously asserted ctrl.valid signal for the valid pixels in each line.

Object Functions
To use an object function, specify the System object as the first input argument. For example, to
release system resources of a System object named obj, use this syntax:

release(obj)

Common to All System Objects
step Run System object algorithm
release Release resources and allow changes to System object property values and input

characteristics
reset Reset internal states of System object

 visionhdl.LineBuffer

2-131

Examples

Construct an Averaging Filter Using a Line Buffer

The visionhdl.LineBuffer System object™ stores video lines and returns sliding neighborhoods
for kernel-based image operations. This example calculates the average of each neighborhood.

Import image source and set up serializer and deserializer objects.

frmOrig = imread('rice.png');
frmActivePixels = 48;
frmActiveLines = 32;
frmIn = frmOrig(1:frmActiveLines,1:frmActivePixels);
figure
imshow(frmIn,'InitialMagnification',300)
title 'Input Image'

frm2pix = visionhdl.FrameToPixels(...
 'NumComponents',1,...
 'VideoFormat','custom',...
 'ActivePixelsPerLine',frmActivePixels,...
 'ActiveVideoLines',frmActiveLines,...
 'TotalPixelsPerLine',frmActivePixels+10,...
 'TotalVideoLines',frmActiveLines+10,...
 'StartingActiveLine',6,...
 'FrontPorch',5);
[~,~,numPixPerFrm] = getparamfromfrm2pix(frm2pix);

pix2frm = visionhdl.PixelsToFrame(...
 'NumComponents',1,...
 'VideoFormat','custom',...
 'ActivePixelsPerLine',frmActivePixels,...
 'ActiveVideoLines',frmActiveLines);

Write a function that creates and calls the System object™. The object returns one column of the
neighborhood at a time. Use a shift register to save the columns. Then, calculate the average of the
pixel neighborhood. You can generate HDL from this function.

Note: This object syntax runs only in R2016b or later. If you are using an earlier release, replace
each call of an object with the equivalent step syntax. For example, replace myObject(x) with
step(myObject,x).

2 System Objects

2-132

function [pixOut,ctrlOut] = AvgFilter(pixIn,ctrlIn)
%AvgFilter
% Calculates the average pixel value for each 3x3 kernel
% pixIn and pixOut are scalar uint8 pixel values.
% ctrlIn and ctrlOut are structures that contain control signals associated
% with the pixel.
% You can generate HDL code from this function.

 persistent linemem;
 if isempty(linemem)
 linemem = visionhdl.LineBuffer;
 end
 persistent dataShiftReg;
 if isempty(dataShiftReg)
 % use typeof(pixIn)?
 dataShiftReg = fi(zeros(3,3),0,8,0);
 end
 % HDL code gen does not support arrays of structs
 persistent controlShiftReg1;
 persistent controlShiftReg2;
 persistent controlShiftReg3;
 if isempty(controlShiftReg1)
 controlShiftReg1 = pixelcontrolstruct();
 controlShiftReg2 = pixelcontrolstruct();
 controlShiftReg3 = pixelcontrolstruct();
 end

 persistent div9;
 if isempty(div9)
 div9 = fi(1/9,0,12,15);
 end

 % Advance shift registers
 dataShiftReg(:,2:end) = dataShiftReg(:,1:end-1);
 controlShiftReg3 = controlShiftReg2;
 controlShiftReg2 = controlShiftReg1;

 % Fetch next column
 [dataShiftReg(:,1),controlShiftReg1] = linemem(fi(pixIn,0,8,0),ctrlIn);

 % Calculate the average over the neighborhood
 pixOut = uint8((sum(dataShiftReg(:),'native')).*div9);
 ctrlOut = controlShiftReg3;

end

Process the image by calling the function for each pixel.

pixOutVec = ones(numPixPerFrm,1,'uint8');
ctrlOutVec = repmat(pixelcontrolstruct(false,false,false,false,false),numPixPerFrm,1);

[pixInVec,ctrlInVec] = frm2pix(frmIn);
for p = 1:numPixPerFrm
 [pixOutVec(p),ctrlOutVec(p)] = AvgFilter(pixInVec(p),ctrlInVec(p));
end

 visionhdl.LineBuffer

2-133

Recreate the filtered frame.

[frmOut,frmValid] = step(pix2frm,pixOutVec,ctrlOutVec);

if frmValid
 figure;
 imshow(frmOut,'InitialMagnification',300)
 title 'Output Image'
end

Algorithms
The object stores M – 1 lines of valid pixels, as specified by the neighborhood size. It adds padding
bits at the edge of the frame. The object returns the first output column once it can form a complete
neighborhood column, which occurs at the start of input line floor(M/2).

2 System Objects

2-134

See Also
Blocks
Line Buffer

Objects
visionhdl.FrameToPixels

Introduced in R2017b

 visionhdl.LineBuffer

2-135

visionhdl.LookupTable
Package: visionhdl

Map input pixel to output pixel using custom rule

Description
The visionhdl.LookupTable System object uses a custom one-to-one map to convert between an
input pixel value and an output pixel value.

To map an input pixel value to an output pixel value:

1 Create the visionhdl.LookupTable object and set its properties.
2 Call the object with arguments, as if it were a function.

To learn more about how System objects work, see What Are System Objects?.

Creation

Syntax
LUT = visionhdl.LookupTable(tabledata)
[pixelOut,ctrlOut] = LUT(pixelIn,ctrlIn)

Description

LUT = visionhdl.LookupTable(tabledata) returns a lookup table System object that performs
a one-to-one mapping between an input pixel and an output pixel. The mapping is defined by the
Table property, which is set to the value of tabledata.

Properties
Unless otherwise indicated, properties are nontunable, which means you cannot change their values
after calling the object. Objects lock when you call them, and the release function unlocks them.

If a property is tunable, you can change its value at any time.

For more information on changing property values, see System Design in MATLAB Using System
Objects.

Table — Map between input pixel and output pixel
uint8(0:1:255) (default) | vector

Map between input pixel and output pixel, specified as a row or column vector of any data type. The
data type of the table data determines that of pixelOut. This mapping determines the one-to-one
correspondence between the input pixelIn value and the output pixelOut value.

2 System Objects

2-136

• The length of the table data must equal 2WordLength, where WordLength is the size, in bits, of
pixelIn. This object does not perform interpolation. Every input value must have a
corresponding output value in the table.

• The smallest representable value of the input data type maps to the first element of the table, the
second smallest value maps to the second element, and so on. For example, if pixelIn has a data
type of fixdt(0,3,1), the input value 0 maps to the first element of the table, 0.5 maps to the
second element, 1 maps to the third element, and so on.

Example: uint8(linspace(255,0,256))

Usage

Syntax
LUT = visionhdl.LookupTable(tabledata)
[pixelOut,ctrlOut] = LUT(pixelIn,ctrlIn)

Description

[pixelOut,ctrlOut] = LUT(pixelIn,ctrlIn) returns the pixel value, pixelOut, located in
the table at the address specified by the input pixel value, pixelIn. The object delays the input
control signals, ctrlIn, to align the output control signals, ctrlOut, with the output data.

This object uses a streaming pixel interface with a structure for frame control signals. This interface
enables the object to operate independently of image size and format, and to connect with other
Vision HDL Toolbox objects. The object accepts and returns a scalar pixel value and control signals as
a structure containing five signals. The control signals indicate the validity of each pixel and its
location in the frame. To convert a pixel matrix into a pixel stream and control signals, use the
visionhdl.FrameToPixels object. For a full description of the interface, see “Streaming Pixel
Interface”.

Input Arguments

pixelIn — Input pixel
scalar | row vector

Input pixel, specified as a scalar intensity value or a row vector of three values representing one pixel
in R'G'B' or Y'CbCr color space. For unsigned fixed-point data types, the input word length must be
less than or equal to 16.

You can simulate System objects with a multipixel streaming interface, but System objects that use
multipixel streams are not supported for HDL code generation. Use the equivalent blocks to generate
HDL code for multipixel algorithms.
Data Types: logical | uint8 | uint16 | fi

ctrlIn — Control signals accompanying input pixel stream
pixelcontrol structure

Control signals accompanying input pixel stream, specified as a pixelcontrol structure containing
five logical data type signals. The signals describe the validity of the pixel and its location in the
frame. For more details, see “Pixel Control Structure”.
Data Types: struct

 visionhdl.LookupTable

2-137

Output Arguments

pixelOut — Output pixel
scalar | vector

Output pixel, returned as a scalar intensity value or a vector of three values representing R'G'B' or
Y'CbCr color space. The data type of the output is the same as the data type of the entries you specify
in the Table property.

ctrlOut — Control signals accompanying output pixel stream
pixelcontrol structure

Control signals accompanying output the pixel stream, returned as a pixelcontrol structure
containing five logical data type signals. The signals describe the validity of the pixel and its
location in the frame. For more details, see “Pixel Control Structure”.
Data Types: struct

Object Functions
To use an object function, specify the System object as the first input argument. For example, to
release system resources of a System object named obj, use this syntax:

release(obj)

Common to All System Objects
step Run System object algorithm
release Release resources and allow changes to System object property values and input

characteristics
reset Reset internal states of System object

Examples

Compute Negative Image

Create the negative of an image by looking up the opposite pixel values in a table.

Set dimensions of the test image, and load an image source. Select a portion of the image matching
the desired test size.

frmActivePixels = 64;
frmActiveLines = 48;
frmOrig = imread('rice.png');
frmInput = frmOrig(1:frmActiveLines,1:frmActivePixels);
figure
imshow(frmInput,'InitialMagnification',300)
title 'Input Image'

2 System Objects

2-138

Create a serializer object and define inactive pixel regions.

frm2pix = visionhdl.FrameToPixels(...
 'NumComponents',1, ...
 'VideoFormat','custom', ...
 'ActivePixelsPerLine',frmActivePixels, ...
 'ActiveVideoLines',frmActiveLines, ...
 'TotalPixelsPerLine',frmActivePixels+10, ...
 'TotalVideoLines',frmActiveLines+10, ...
 'StartingActiveLine',6, ...
 'FrontPorch',5);

Create a lookup table object. The input pixel data type is uint8, so the negative value is 255-pixel.
The output pixel data type is the same as the data type of the table contents.

tabledata = uint8(linspace(255,0,256));
inverter = visionhdl.LookupTable(tabledata);

Serialize the test image. pixIn is a vector of intensity values. ctrlIn is a vector of control signal
structures.

[pixIn,ctrlIn] = frm2pix(frmInput);

Initialize the output variables. Then, for each pixel in the padded frame, look up its negative value.

[~,~,numPixelsPerFrame] = getparamfromfrm2pix(frm2pix);
pixOut = zeros(numPixelsPerFrame,1,'uint8');
ctrlOut = repmat(pixelcontrolstruct,numPixelsPerFrame,1);
for p = 1:numPixelsPerFrame
 [pixOut(p),ctrlOut(p)] = inverter(pixIn(p),ctrlIn(p));
end

Create deserializer object with a video format matching that of the serializer. Convert the output pixel
stream to an image frame, and display the result.

pix2frm = visionhdl.PixelsToFrame(...
 'NumComponents',1, ...
 'VideoFormat','custom', ...
 'ActivePixelsPerLine',frmActivePixels, ...
 'ActiveVideoLines',frmActiveLines);

 visionhdl.LookupTable

2-139

[frmOutput,frmValid] = pix2frm(pixOut,ctrlOut);
if frmValid
 figure
 imshow(frmOutput,'InitialMagnification',300)
 title 'Output Image'
end

Algorithms
Latency

The latency of this System object is 2 cycles.

See Also
Lookup Table | visionhdl.FrameToPixels

Introduced in R2015a

2 System Objects

2-140

visionhdl.MeasureTiming
Package: visionhdl

Measure timing of pixel control structure input

Description
The visionhdl.MeasureTiming object measures the timing parameters of a video stream. The
Vision HDL Toolbox streaming pixel protocol implements the timing of a video system, including
inactive intervals between frames. These inactive intervals are called blanking intervals. Many Vision
HDL Toolbox objects require minimum blanking intervals. You can use the timing parameter
measurements from this object to check that your video stream meets these requirements. If you
manipulate the control signals of your video stream, you can use this object to verify the resulting
control signals. To determine the parameters of each frame, the object measures time steps between
the control signals in the input structure.

For details on the pixel control bus and the dimensions of a video frame, see “Streaming Pixel
Interface”.

Note Starting in R2016b, instead of using the step method to perform the operation defined by the
System object, you can call the object with arguments, as if it were a function. For example, y =
step(obj,x) and y = obj(x) perform equivalent operations.

Construction
measure = visionhdl.MeasureTiming returns a System object, measure, that measures the
average frame timing of a video stream.

Methods
step Measure timing of pixel control structure input

Common to All System Objects
release Allow System object property value changes

Examples

Measure Timing Parameters of Custom Video Stream

This example shows how to use the MeasureTiming object to observe the frame parameters in a
custom video stream. The example creates customized padding around an image frame and converts
the frame to streaming video. It uses the MeasureTiming object to confirm that the streaming video
parameters match the custom settings.

Use a FrameToPixels object to specify a small custom-size frame with customized blanking
intervals. To obtain a frame of this size, select a small section of the input image.

 visionhdl.MeasureTiming

2-141

frm2pix = visionhdl.FrameToPixels(...
 'VideoFormat','custom',...
 'ActivePixelsPerLine',32,...
 'ActiveVideoLines',18,...
 'TotalPixelsPerLine',42,...
 'TotalVideoLines',26,...
 'StartingActiveLine',6,...
 'FrontPorch',5);
[actPixPerLine,actLine,numPixPerFrm] = getparamfromfrm2pix(frm2pix);

frmFull = imread('rice.png');
frmIn = frmFull(74:73+actLine,104:103+actPixPerLine);
imshow(frmIn)

Create a MeasureTiming object to observe the parameters of the serial pixel output from the
FrameToPixels object.

measure = visionhdl.MeasureTiming;

Serialize the input frame.

[pixInVec,ctrlInVec] = frm2pix(frmIn);

Some parameters require measurements between frames, so you must simulate at least two frames
before using the results. Because you serialized only one input frame, process that frame twice to
measure all parameters correctly.

for f = 1:2
 for p = 1:numPixPerFrm
 [activePixels,activeLines,totalPixels,totalLines,...
 horizBlank,vertBlank] = measure(ctrlInVec(p));
 end
 fprintf('\nFrame %d:\n',f)
 fprintf('activePixels: %f\n',activePixels)
 fprintf('activeLines: %f\n',activeLines)
 fprintf('totalPixels: %f\n',totalPixels)
 fprintf('totalLines: %f\n',totalLines)
 fprintf('horizBlank: %f\n',horizBlank)
 fprintf('vertBlank: %f\n',vertBlank)
end

Frame 1:

activePixels: 32.000000

activeLines: 18.000000

totalPixels: 42.000000

2 System Objects

2-142

totalLines: 22.880952

horizBlank: 10.000000

vertBlank: 4.880952

Frame 2:

activePixels: 32.000000

activeLines: 18.000000

totalPixels: 42.000000

totalLines: 26.000000

horizBlank: 10.000000

vertBlank: 8.000000

The measurements after the first frame are not accurate. However, after the second frame, the
measurements match the parameters chosen in the FrameToPixels object.

See Also
Measure Timing | visionhdl.FrameToPixels

Introduced in R2016b

 visionhdl.MeasureTiming

2-143

step
System object: visionhdl.MeasureTiming
Package: visionhdl

Measure timing of pixel control structure input

Syntax
[activePixels,activeLines,totalPixels,totalLines,horizBlank,vertBlank] =
step(measure,ctrlIn)

Description

Note Alternatively, instead of using the step method to perform the operation defined by the System
object, you can call the object with arguments, as if it were a function. For example, y =
step(obj,x) and y = obj(x) perform equivalent operations.

[activePixels,activeLines,totalPixels,totalLines,horizBlank,vertBlank] =
step(measure,ctrlIn) incorporates the current pixel location into calculations of video frame
timing. The control signals, ctrlIn, associated with each pixel indicate the location of this pixel
relative to the active frame boundaries. The input object measures the time steps between the control
signals to determine the parameters of each frame.

Note The System object performs an initialization the first time you call the step method. This
initialization locks nontunable properties and input specifications, such as dimensions, complexity,
and data type of the input data. If you change a nontunable property or an input specification, the
object issues an error. To change nontunable properties or inputs, first call the release method to
unlock the object.

Input Arguments
measure — Timing analyzer
visionhdl.MeasureTiming System object

Specify a visionhdl.MeasureTiming System object that you created and configured.

ctrlIn — Control signals accompanying input pixel stream
pixelcontrol structure

Control signals accompanying input pixel stream, specified as a pixelcontrol structure containing
five logical data type signals. The signals describe the validity of the pixel and its location in the
frame. For more details, see “Pixel Control Structure”.
Data Types: struct

2 System Objects

2-144

Output Arguments
The diagram shows the output measurements, as determined from the pixel stream control signals.

For details on the pixel control bus and the dimensions of a video frame, see “Streaming Pixel
Interface”.

Note Measurements from the first simulated frame are incorrect because some parameters require
measurements between frames. Simulate at least two frames before using the results.

activePixels — Number of active pixels per line
integer

This value is measured between hStart and hEnd. See marker 1 in the diagram.

activeLines — Number of active lines in the frame
integer

This value is measured as the number of hStart pulses between vStart and vEnd. See marker 2 in
the diagram.

totalPixels — Number of pixels in the line
integer

This value is measured from hStart to the next hStart, including the horizontal blanking interval.
See marker 3 in the diagram.

totalLines — Number of lines in the frame
integer

This value is measured by the interval from vEnd to the next vEnd, divided by totalPixels. It
includes the vertical blanking interval. See marker 4 in the diagram.

horizBlank — Number of pixels in the horizontal blanking interval
integer

The horizontal blanking interval is the number of inactive pixels between lines of a frame. This value
is measured between hEnd and the next hStart. See marker 5 in the diagram.

vertBlank — Number of lines in the vertical blanking interval
integer

The vertical blanking interval is the number of inactive lines between frames. This value is measured
from vEnd to the next vStart, adjusted to remove horizBlank, then divided by totalPixels. See
marker 6 in the diagram.

 step

2-145

Introduced in R2016b

2 System Objects

2-146

visionhdl.MedianFilter
Package: visionhdl

2-D median filtering

Description
visionhdl.MedianFilter performs 2-D median filtering on a pixel stream. The object replaces
each pixel value with the median value of the adjacent pixels.

This object uses a streaming pixel interface with a structure for frame control signals. This interface
enables the object to operate independently of image size and format, and to connect with other
Vision HDL Toolbox objects. The object accepts and returns a scalar pixel value and control signals as
a structure containing five signals. The control signals indicate the validity of each pixel and its
location in the frame. To convert a pixel matrix into a pixel stream and control signals, use the
visionhdl.FrameToPixels object. For a full description of the interface, see “Streaming Pixel
Interface”.

Note Starting in R2016b, instead of using the step method to perform the operation defined by the
System object, you can call the object with arguments, as if it were a function. For example, y =
step(obj,x) and y = obj(x) perform equivalent operations.

Construction
MF = visionhdl.MedianFilter returns a System object, MF, that performs two-dimensional
median filtering of serial pixel data.

MF = visionhdl.MedianFilter(Name,Value) returns a median filter System object, MF, with
additional options specified by one or more Name,Value pair arguments. Name is a property name
and Value is the corresponding value. Name must appear inside single quotes (''). You can specify
several name-value pair arguments in any order as Name1,Value1,...,NameN,ValueN. Properties
not specified retain their default values.

MF = visionhdl.MedianFilter(size,Name,Value) returns a median filter System object, MF,
with the NeighborhoodSize property set to size and additional options specified by one or more
Name,Value pair arguments.

Input Arguments

size

Size in pixels of the image region used to compute the median. This argument sets the
NeighborhoodSize property value.

Output Arguments

MF

visionhdl.MedianFilter System object.

 visionhdl.MedianFilter

2-147

Properties
NeighborhoodSize

Neighborhood size, in pixels.

• '3×3' (default)
• '5×5'
• '7×7'

LineBufferSize

Specify a power of two that accommodates the number of active pixels in a single horizontal line.

Choose a power of 2 that accommodates the number of active pixels in a horizontal line. If you specify
a value that is not a power of two, the object uses the next largest power of two. The object allocates
N - 1-by-LineBufferSize memory locations to store the pixels used to compute the median value. N
is the number of lines in the square region specified in Neighborhood size.

Default: 2048

PaddingMethod

Select one of these methods for padding the boundary of the input image.

• 'Constant' — Interpret pixels outside the image frame as having a constant value.
• 'Replicate' — Repeat the value of pixels at the edge of the image.
• 'Symmetric' — Set the value of the padding pixels to mirror the edge of the image.
• 'None' — Exclude padding logic. The object does not set the pixels outside the image frame to

any particular value. This option reduces the hardware resources used by the object and the
blanking required between frames but affects the accuracy of the output pixels at the edges of the
frame. To maintain pixel stream timing, the output frame is the same size as the input frame.
However, to avoid using pixels calculated from undefined padding values, mask off the n/2 pixels
around the edge of the frame for downstream operations, where n is the size of the operation
kernel. For details, see “Increase Throughput with Padding None”.

For more information about these methods, see “Edge Padding”.

Default: 'Symmetric'

PaddingValue

Constant value used to pad the boundary of the input image. This property applies when you set
PaddingMethod to 'Constant'. The object casts this value to the same data type as the input pixel.

Default: 0

Methods

step Median pixel value of neighborhood

2 System Objects

2-148

Common to All System Objects
release Allow System object property value changes

Examples

Median Filter on a Pixel-Stream

This example implements a 5×5 median filter on a thumbnail image.

Load the source image from a file. Select a portion of the image matching the desired test size.

frmOrig = imread('rice.png');
frmActiveLines = 48;
frmActivePixels = 64;
frmInput = frmOrig(1:frmActiveLines,1:frmActivePixels);
figure
imshow(frmInput,'InitialMagnification',300)
title 'Input Image'

Create a serializer object and specify the size of the inactive pixel regions.

frm2pix = visionhdl.FrameToPixels(...
 'NumComponents',1,...
 'VideoFormat','custom',...
 'ActivePixelsPerLine',frmActivePixels,...
 'ActiveVideoLines',frmActiveLines,...
 'TotalPixelsPerLine',frmActivePixels+10,...
 'TotalVideoLines',frmActiveLines+10,...
 'StartingActiveLine',6,...
 'FrontPorch',5);

Create a filter object and specify a neighbourhood.

 medianfilt = visionhdl.MedianFilter(...
 'NeighborhoodSize','5x5');

Serialize the test image by calling the serializer object. pixIn is a vector of intensity values. ctrlIn
is a vector of control signal structures.

 visionhdl.MedianFilter

2-149

Note: This object syntax runs only in R2016b or later. If you are using an earlier release, replace
each call of an object with the equivalent step syntax. For example, replace myObject(x) with
step(myObject,x).

[pixIn,ctrlIn] = frm2pix(frmInput);

Prepare to process pixels by preallocating output vectors.

[~,~,numPixelsPerFrame] = getparamfromfrm2pix(frm2pix);
pixOut = zeros(numPixelsPerFrame,1,'uint8');
ctrlOut = repmat(pixelcontrolstruct,numPixelsPerFrame,1);

For each pixel in the padded frame, compute the local median. Monitor control signals to determine
latency of the object. The latency of a filter configuration depends on:

• The number of active pixels in a line.
• The size of the neighbourhood.

foundValIn = false;
foundValOut = false;
for p = 1:numPixelsPerFrame
 if (ctrlIn(p).valid && foundValIn==0)
 foundValIn = p;
 end
 [pixOut(p),ctrlOut(p)] = medianfilt(pixIn(p),ctrlIn(p));
 if (ctrlOut(p).valid && foundValOut==0)
 foundValOut = p;
 end
end
sprintf('object latency is %d cycles',foundValOut-foundValIn)

ans =
'object latency is 177 cycles'

Create a deserializer object with a format matching that of the serializer. Convert the pixel stream to
an image frame by calling the deserializer object. Display the resulting image.

pix2frm = visionhdl.PixelsToFrame(...
 'NumComponents',1,...
 'VideoFormat','custom',...
 'ActivePixelsPerLine',frmActivePixels,...
 'ActiveVideoLines',frmActiveLines);
[frmOutput,frmValid] = pix2frm(pixOut,ctrlOut);
if frmValid
 figure
 imshow(frmOutput, 'InitialMagnification',300)
 title 'Output Image'
end

2 System Objects

2-150

Algorithms
This object implements the algorithms described on the Median Filter block reference page.

See Also
Median Filter | medfilt2 | visionhdl.FrameToPixels

Introduced in R2015a

 visionhdl.MedianFilter

2-151

step
System object: visionhdl.MedianFilter
Package: visionhdl

Median pixel value of neighborhood

Syntax
[pixelOut,ctrlOut] = step(medfilt,pixelIn,ctrlIn)

Description

Note Starting in R2016b, instead of using the step method to perform the operation defined by the
System object, you can call the object with arguments, as if it were a function. For example, y =
step(obj,x) and y = obj(x) perform equivalent operations.

[pixelOut,ctrlOut] = step(medfilt,pixelIn,ctrlIn) returns the next pixel value,
pixelOut, in the filtered pixel stream resulting from calculating the median of the neighborhood
around each input pixel, pixelIn. Before filtering, the object pads image edges according to the
PaddingMethod property.

This object uses a streaming pixel interface with a structure for frame control signals. This interface
enables the object to operate independently of image size and format, and to connect with other
Vision HDL Toolbox objects. The object accepts and returns a scalar pixel value and control signals as
a structure containing five signals. The control signals indicate the validity of each pixel and its
location in the frame. To convert a pixel matrix into a pixel stream and control signals, use the
visionhdl.FrameToPixels object. For a full description of the interface, see “Streaming Pixel
Interface”.

Note The System object performs an initialization the first time you call the step method. This
initialization locks nontunable properties and input specifications, such as dimensions, complexity,
and data type of the input data. If you change a nontunable property or an input specification, the
object issues an error. To change nontunable properties or inputs, first call the release method to
unlock the object.

Input Arguments
medfilt — Filter
visionhdl.MedianFilter System object

Specify a visionhdl.MedianFilter System object that you created and configured.

pixelIn — Input pixel
scalar

Single pixel, specified as a scalar value.

2 System Objects

2-152

Supported data types:

• uint or int
• fixdt(~,N,0)
• logical
• double and single data types are supported for simulation, but not for HDL code generation.

You can simulate System objects with a multipixel streaming interface, but System objects that use
multipixel streams are not supported for HDL code generation. Use the equivalent blocks to generate
HDL code for multipixel algorithms.

ctrlIn — Control signals accompanying input pixel stream
pixelcontrol structure

Control signals accompanying input pixel stream, specified as a pixelcontrol structure containing
five logical data type signals. The signals describe the validity of the pixel and its location in the
frame. For more details, see “Pixel Control Structure”.
Data Types: struct

Output Arguments
pixelOut — Output pixel
scalar

Single pixel value representing the median of its neighborhood, returned as a scalar value.

The data type is the same as the data type of pixelIn.

ctrlOut — Control signals accompanying output pixel stream
pixelcontrol structure

Control signals accompanying output the pixel stream, returned as a pixelcontrol structure
containing five logical data type signals. The signals describe the validity of the pixel and its
location in the frame. For more details, see “Pixel Control Structure”.
Data Types: struct

Introduced in R2015a

 step

2-153

visionhdl.Opening
Package: visionhdl

Morphological opening of binary pixel data

Description
visionhdl.Opening performs morphological erosion, followed by morphological dilation, using the
same neighborhood for both calculations. The object operates on a stream of binary intensity values.

This object uses a streaming pixel interface with a structure for frame control signals. This interface
enables the object to operate independently of image size and format, and to connect with other
Vision HDL Toolbox objects. The object accepts and returns a scalar pixel value and control signals as
a structure containing five signals. The control signals indicate the validity of each pixel and its
location in the frame. To convert a pixel matrix into a pixel stream and control signals, use the
visionhdl.FrameToPixels object. For a full description of the interface, see “Streaming Pixel
Interface”.

Note Starting in R2016b, instead of using the step method to perform the operation defined by the
System object, you can call the object with arguments, as if it were a function. For example, y =
step(obj,x) and y = obj(x) perform equivalent operations.

Construction
O = visionhdl.Opening returns a System object, O, that performs morphological opening on a
binary pixel stream.

O = visionhdl.Opening(Name,Value) returns a System object, O, with additional options
specified by one or more Name,Value pair arguments. Name is a property name and Value is the
corresponding value. Name must appear inside single quotes (''). You can specify several name-value
pair arguments in any order as Name1,Value1,...,NameN,ValueN. Properties not specified retain
their default values.

Properties
Neighborhood

Pixel neighborhood, specified as a vector or matrix of binary values.

The object supports neighborhoods of up to 32-by-32 pixels. To use a structuring element, specify
Neighborhood as getnhood(strel(shape)), where shape is specified by the input arguments to
the strel function.

When you use multipixel vector input, the neighborhood must be at least two pixels in each
dimension.

Default: ones(3,3)

2 System Objects

2-154

LineBufferSize

Specify a power of two that accommodates the number of active pixels in a single horizontal line.

Size of line memory buffer, specified as a positive integer. Choose a power of two that accommodates
the number of active pixels in a horizontal line. If you specify a value that is not a power of two, the
object uses the next largest power of two. The object allocates (n – 1)-by-LineBufferSize memory
locations to store the pixels, where n is the number of lines in the Neighborhood parameter value.

Default: 2048

PaddingMethod

Select one of these methods for padding the boundary of the input image. For more information about
these methods, see “Edge Padding”.

• 'Constant' — The object pads the image with ones for the erosion operation and with zeros for
the dilation operation. These values prevent opening at the boundaries of the active frame.

• 'None' — Exclude padding logic. The object does not set the pixels outside the image frame to
any particular value. This option reduces the hardware resources used by the object and the
blanking required between frames but affects the accuracy of the output pixels at the edges of the
frame. To maintain pixel stream timing, the output frame is the same size as the input frame.
However, to avoid using pixels calculated from undefined padding values, mask off the n/2 pixels
around the edge of the frame for downstream operations, where n is the size of the operation
kernel. For details, see “Increase Throughput with Padding None”.

Default: 'Constant'

Methods
step Report opened pixel value based on neighborhood

Common to All System Objects
release Allow System object property value changes

Examples

Morphological Open

Perform morphological open on a thumbnail image.

Load a source image from a file. Select a portion of the image that matches the desired test size. This
source image contains uint8 pixel intensity values. Apply a threshold to convert to binary pixel data.

frmOrig = imread('rice.png');
frmActivePixels = 64;
frmActiveLines = 48;
frmInput = frmOrig(1:frmActiveLines,1:frmActivePixels);
frmInput = frmInput>128;
figure
imshow(frmInput,'InitialMagnification',300)
title 'Input Image'

 visionhdl.Opening

2-155

Create a serializer object and define inactive pixel regions. Make the number of inactive pixels
following each active line at least double the horizontal size of the neighborhood. Make the number of
lines following each frame at least double the vertical size of the neighborhood.

frm2pix = visionhdl.FrameToPixels(...
 'NumComponents',1,...
 'VideoFormat','custom',...
 'ActivePixelsPerLine',frmActivePixels,...
 'ActiveVideoLines',frmActiveLines,...
 'TotalPixelsPerLine',frmActivePixels+20,...
 'TotalVideoLines',frmActiveLines+10,...
 'StartingActiveLine',3,...
 'FrontPorch',10);

Create a filter object.

 mopen = visionhdl.Opening(...
 'Neighborhood',ones(5,5));

Serialize the test image by calling the serializer object. pixIn is a vector of intensity values. ctrlIn
is a vector of control signal structures.

Note: This object syntax runs only in R2016b or later. If you are using an earlier release, replace
each call of an object with the equivalent step syntax. For example, replace myObject(x) with
step(myObject,x).

[pixIn,ctrlIn] = frm2pix(frmInput);

Prepare to process pixels by preallocating output vectors.

[~,~,numPixelsPerFrame] = getparamfromfrm2pix(frm2pix);
pixOut = false(numPixelsPerFrame,1);
ctrlOut = repmat(pixelcontrolstruct,numPixelsPerFrame,1);

For each pixel in the padded frame, compute the morphed value. Monitor the control signals to
determine latency of the object. The latency of a configuration depends on the number of active pixels
in a line and the size of the neighborhood

foundValIn = false;
foundValOut = false;

2 System Objects

2-156

for p = 1:numPixelsPerFrame
 if (ctrlIn(p).valid && foundValIn==0)
 foundValIn = p;
 end
 [pixOut(p),ctrlOut(p)] = mopen(pixIn(p),ctrlIn(p));
 if (ctrlOut(p).valid && foundValOut==0)
 foundValOut = p;
 end
end
sprintf('object latency is %d cycles',foundValOut-foundValIn)

ans =
'object latency is 368 cycles'

Create a deserializer object with a format matching that of the serializer. Convert the pixel stream to
an image frame by calling the deserializer object. Display the resulting image.

pix2frm = visionhdl.PixelsToFrame(...
 'NumComponents',1,...
 'VideoFormat','custom',...
 'ActivePixelsPerLine',frmActivePixels,...
 'ActiveVideoLines',frmActiveLines);
[frmOutput,frmValid] = pix2frm(pixOut,ctrlOut);
if frmValid
 figure
 imshow(frmOutput, 'InitialMagnification',300)
 title 'Output Image'
end

Algorithms
This object implements the algorithms described on the Opening block reference page.

See Also
Opening | imopen | visionhdl.Closing | visionhdl.Dilation | visionhdl.Erosion |
visionhdl.FrameToPixels

 visionhdl.Opening

2-157

Introduced in R2015a

2 System Objects

2-158

step
System object: visionhdl.Opening
Package: visionhdl

Report opened pixel value based on neighborhood

Syntax
[pixelOut,ctrlOut] = step(open,pixelIn,ctrlIn)

Description

Note Starting in R2016b, instead of using the step method to perform the operation defined by the
System object, you can call the object with arguments, as if it were a function. For example, y =
step(obj,x) and y = obj(x) perform equivalent operations.

[pixelOut,ctrlOut] = step(open,pixelIn,ctrlIn) returns the next pixel value, pixelOut,
resulting from a morphological open operation on the neighborhood around each input pixel,
pixelIn.

This object uses a streaming pixel interface with a structure for frame control signals. This interface
enables the object to operate independently of image size and format, and to connect with other
Vision HDL Toolbox objects. The object accepts and returns a scalar pixel value and control signals as
a structure containing five signals. The control signals indicate the validity of each pixel and its
location in the frame. To convert a pixel matrix into a pixel stream and control signals, use the
visionhdl.FrameToPixels object. For a full description of the interface, see “Streaming Pixel
Interface”.

Note The System object performs an initialization the first time you call the step method. This
initialization locks nontunable properties and input specifications, such as dimensions, complexity,
and data type of the input data. If you change a nontunable property or an input specification, the
object issues an error. To change nontunable properties or inputs, first call the release method to
unlock the object.

Input Arguments
open — Morphological opener
visionhdl.Opening System object

Specify a visionhdl.Opening System object that you created and configured.

pixelIn — Input pixel
0 or false | 1 or true

Input pixel, specified as a logical value.
Data Types: logical

 step

2-159

ctrlIn — Control signals accompanying input pixel stream
pixelcontrol structure

Control signals accompanying input pixel stream, specified as a pixelcontrol structure containing
five logical data type signals. The signals describe the validity of the pixel and its location in the
frame. For more details, see “Pixel Control Structure”.
Data Types: struct

Output Arguments
pixelOut — Output pixel
0 or false | 1 or true

Single output pixel transformed by a morphological operation, returned as a logical value.

ctrlOut — Control signals accompanying output pixel stream
pixelcontrol structure

Control signals accompanying output the pixel stream, returned as a pixelcontrol structure
containing five logical data type signals. The signals describe the validity of the pixel and its
location in the frame. For more details, see “Pixel Control Structure”.
Data Types: struct

Introduced in R2015a

2 System Objects

2-160

visionhdl.GrayscaleOpening
Package: visionhdl

Morphological opening of grayscale pixel data

Description
visionhdl.GrayscaleOpening performs morphological erosion, followed by morphological
dilation, using the same neighborhood for both calculations. The object operates on a stream of pixel
intensity values. You can specify a neighborhood, or structuring element, of up to 32×32 pixels. For
line, square, or rectangle structuring elements more than 8 pixels wide, the object uses the Van Herk
algorithm to find the maximum and minimum. For structuring elements less than 8 pixels wide, or
that contain zero elements, the object implements a pipelined comparison tree to find the maximum
and minimum.

This object uses a streaming pixel interface with a structure for frame control signals. This interface
enables the object to operate independently of image size and format, and to connect with other
Vision HDL Toolbox objects. The object accepts and returns a scalar pixel value and control signals as
a structure containing five signals. The control signals indicate the validity of each pixel and its
location in the frame. To convert a pixel matrix into a pixel stream and control signals, use the
visionhdl.FrameToPixels object. For a full description of the interface, see “Streaming Pixel
Interface”.

Note Starting in R2016b, instead of using the step method to perform the operation defined by the
System object, you can call the object with arguments, as if it were a function. For example, y =
step(obj,x) and y = obj(x) perform equivalent operations.

Construction
O = visionhdl.GrayscaleOpening returns a System object, O, that performs morphological
opening on a pixel stream.

O = visionhdl.GrayscaleOpening(Name,Value) returns a System object, O, with additional
options specified by one or more Name,Value pair arguments. Name is a property name on page 2-
161 and Value is the corresponding value. Name must appear inside single quotes (''). You can
specify several name-value pair arguments in any order as Name1,Value1,...,NameN,ValueN.
Properties not specified retain their default values.

Properties
Neighborhood

Pixel neighborhood, specified as a vector or matrix of binary values.

The object supports neighborhoods of up to 32×32 pixels. To use a structuring element, specify
Neighborhood as getnhood(strel(shape)). The minimum neighborhood size is a 2×2 matrix, or
a 2×1 column vector. If the neighborhood is a row vector, it must be at least 8 columns wide and
contain no zeros.

 visionhdl.GrayscaleOpening

2-161

Default: ones(3,3)

LineBufferSize

Specify a power of two that accommodates the number of active pixels in a single horizontal line.

Size of line memory buffer, specified as a positive integer. Choose a power of two that accommodates
the number of active pixels in a horizontal line. If you specify a value that is not a power of two, the
object uses the next largest power of two. The object allocates (n – 1)-by-LineBufferSize memory
locations to store the pixels, where n is the number of lines in the Neighborhood parameter value.

Default: 2048

Methods

step Report opened pixel value based on neighborhood

Common to All System Objects
release Allow System object property value changes

Examples

Grayscale Morphological Opening

Perform morphological opening on a grayscale thumbnail image.

Load a source image from a file. Select a portion of the image matching the desired test size.

frmOrig = imread('rice.png');
frmActivePixels = 64;
frmActiveLines = 48;
frmInput = frmOrig(1:frmActiveLines,1:frmActivePixels);
imshow(frmInput,'InitialMagnification',300)
title 'Input Image'

2 System Objects

2-162

Create a serializer object and define the inactive pixel regions. Make the number of inactive pixels
following each active line at least double the horizontal size of the neighborhood. Make the number of
lines following each frame at least double the vertical size of the neighborhood.

frm2pix = visionhdl.FrameToPixels(...
 'NumComponents',1,...
 'VideoFormat','custom',...
 'ActivePixelsPerLine',frmActivePixels,...
 'ActiveVideoLines',frmActiveLines,...
 'TotalPixelsPerLine',frmActivePixels+20,...
 'TotalVideoLines',frmActiveLines+20,...
 'StartingActiveLine',3,...
 'FrontPorch',10);

Create a filter object.

mopen = visionhdl.GrayscaleOpening(...
 'Neighborhood',ones(2,7));

Serialize the test image by calling the serializer object. pixIn is a vector of intensity values. ctrlIn
is a vector of control signal structures.

Note: This syntax runs only in R2016b or later. If you are using an earlier release, replace each call
of an object with the equivalent step syntax. For example, replace myObject(x) with
step(myObject,x).

[pixIn,ctrlIn] = frm2pix(frmInput);

Prepare to process pixels by preallocating output vectors.

[~,~,numPixelsPerFrame] = getparamfromfrm2pix(frm2pix);
pixOut = uint8(zeros(numPixelsPerFrame,1));
ctrlOut = repmat(pixelcontrolstruct,numPixelsPerFrame,1);

For each pixel in the padded frame, compute the morphed value. Monitor the control signals to
determine the latency of the object. The latency of a configuration depends on the number of active
pixels in a line and the size of the neighborhood.

foundValIn = false;
foundValOut = false;
for p = 1:numPixelsPerFrame
 if (ctrlIn(p).valid && foundValIn==0)
 foundValIn = p;
 end
 [pixOut(p),ctrlOut(p)] = mopen(pixIn(p),ctrlIn(p));
 if (ctrlOut(p).valid && foundValOut==0)
 foundValOut = p;
 end
end
sprintf('object latency is %d cycles',foundValOut-foundValIn)

ans =
'object latency is 216 cycles'

Create a deserializer object with a format matching that of the serializer. Convert the pixel stream to
an image frame by calling the deserializer object. Display the resulting image.

pix2frm = visionhdl.PixelsToFrame(...
 'NumComponents',1,...

 visionhdl.GrayscaleOpening

2-163

 'VideoFormat','custom',...
 'ActivePixelsPerLine',frmActivePixels,...
 'ActiveVideoLines',frmActiveLines);
[frmOutput,frmValid] = pix2frm(pixOut,ctrlOut);
if frmValid
 figure
 imshow(frmOutput, 'InitialMagnification',300)
 title 'Output Image'
end

Algorithms
This object implements the algorithms described on the Grayscale Opening block reference page.

See Also
Grayscale Opening | imopen | visionhdl.FrameToPixels | visionhdl.GrayscaleClosing |
visionhdl.GrayscaleDilation | visionhdl.GrayscaleErosion

Introduced in R2016a

2 System Objects

2-164

step
System object: visionhdl.GrayscaleOpening
Package: visionhdl

Report opened pixel value based on neighborhood

Syntax
[pixelOut,ctrlOut] = step(open,pixelIn,ctrlIn)

Description

Note Starting in R2016b, instead of using the step method to perform the operation defined by the
System object, you can call the object with arguments, as if it were a function. For example, y =
step(obj,x) and y = obj(x) perform equivalent operations.

[pixelOut,ctrlOut] = step(open,pixelIn,ctrlIn) returns the next pixel value, pixelOut,
resulting from morphological opening on the neighborhood around each input pixel intensity value,
pixelIn.

This object uses a streaming pixel interface with a structure for frame control signals. This interface
enables the object to operate independently of image size and format, and to connect with other
Vision HDL Toolbox objects. The object accepts and returns a scalar pixel value and control signals as
a structure containing five signals. The control signals indicate the validity of each pixel and its
location in the frame. To convert a pixel matrix into a pixel stream and control signals, use the
visionhdl.FrameToPixels object. For a full description of the interface, see “Streaming Pixel
Interface”.

Note The System object performs an initialization the first time you call the step method. This
initialization locks nontunable properties and input specifications, such as dimensions, complexity,
and data type of the input data. If you change a nontunable property or an input specification, the
object issues an error. To change nontunable properties or inputs, first call the release method to
unlock the object.

Input Arguments
open — Morphological opener
visionhdl.GrayscaleOpening System object

Specify a visionhdl.GrayscaleOpening System object that you created and configured.

pixelIn — Input pixel
scalar

Single pixel, specified as a scalar value.

Supported data types:

 step

2-165

• uint8, uint16,uint32
• fixdt(0,N,M)
• double and single data types are supported for simulation, but not for HDL code generation.

ctrlIn — Control signals accompanying input pixel stream
pixelcontrol structure

Control signals accompanying input pixel stream, specified as a pixelcontrol structure containing
five logical data type signals. The signals describe the validity of the pixel and its location in the
frame. For more details, see “Pixel Control Structure”.
Data Types: struct

Output Arguments
pixelOut — Output pixel
scalar

Single pixel transformed by a morphological operation, returned as a scalar value.

The data type is the same as the data type of pixelIn.

ctrlOut — Control signals accompanying output pixel stream
pixelcontrol structure

Control signals accompanying output the pixel stream, returned as a pixelcontrol structure
containing five logical data type signals. The signals describe the validity of the pixel and its
location in the frame. For more details, see “Pixel Control Structure”.
Data Types: struct

Introduced in R2016a

2 System Objects

2-166

visionhdl.PixelStreamAligner
Package: visionhdl

Align two streams of pixel data

Description
The visionhdl.PixelStreamAligner System object synchronizes two pixel streams by delaying
one stream to match the timing of a reference stream. Many Vision HDL Toolbox algorithms delay the
pixel stream, and the amount of delay can change as you adjust algorithm parameters. You can use
this object to align streams for overlaying, comparing, or combining two streams such as in a
Gaussian blur operation. Use the delayed stream as the refPixel and refCtrl arguments. Use the
earlier stream as the pixelIn and ctrlIn arguments.

This waveform diagram shows the input streams, pixelIn and refPixelIn, and their associated
control signals. The reference input frame starts later than the pixelIn frame. The output signals
show that the object delays pixelIn to match the reference stream, and that both output streams
share control signals. The waveform shows the short latency between the input refCtrl and the
output refCtrl. In this simulation, to accommodate the delay of four lines between the input
streams, the MaxNumberofLines property must be set to at least 4.

For details on the pixel control bus and the dimensions of a video frame, see “Streaming Pixel
Interface”.

To align two streams of pixel data:

1 Create the visionhdl.PixelStreamAligner object and set its properties.
2 Call the object with arguments, as if it were a function.

To learn more about how System objects work, see What Are System Objects?.

 visionhdl.PixelStreamAligner

2-167

Creation
Syntax
align = visionhdl.PixelStreamAligner(Name,Value)
[pixelOut,refOut,ctrlOut] = align(pixelIn,ctrlIn,refPixel,refCtrl)

Description

align = visionhdl.PixelStreamAligner(Name,Value) creates a System object that
synchronizes a pixel stream with a reference pixel stream. Set properties using one or more name-
value pairs. Enclose each property name in single quotes. For example, 'MaxNumberOfLines',16
sets the buffer depth that accommodates the timing offset between the two input streams.

Properties
Unless otherwise indicated, properties are nontunable, which means you cannot change their values
after calling the object. Objects lock when you call them, and the release function unlocks them.

If a property is tunable, you can change its value at any time.

For more information on changing property values, see System Design in MATLAB Using System
Objects.

LineBufferSize — Size of the line memory buffer
2048 (default) | positive integer

Size of the line memory buffer, specified as a power of two that accommodates the number of active
pixels in a horizontal line. If you specify a value that is not a power of two, the object uses the next
largest power of two. The object implements a circular buffer of 2M locations, where M is
MaxNumberofLines + log2(LineBufferSize).

MaxNumberOfLines — Buffer depth that accommodates the timing offset between input
streams
10 (default) | positive integer

Buffer depth that accommodates the timing offset between input streams, specified as a positive
integer. The object implements a circular buffer of 2M locations, where M is MaxNumberofLines +
log2(LineBufferSize), and a line address buffer of MaxNumberofLines locations. The circular
memory stores the earlier input lines until the reference control signals arrive. The line address
buffer stores the address of the start of each line. When the reference control signals arrive, the
object uses the stored address to read and send the delayed line. This property must accommodate
the difference in timing between the two input streams, including the internal latency before the
object reads the first line. During simulation, the object warns when an overflow occurs. To avoid the
overflow condition, increase MaxNumberofLines. The delay between streams cannot exceed an
entire frame.

Usage

Syntax
align = visionhdl.PixelStreamAligner(Name,Value)

2 System Objects

2-168

[pixelOut,refOut,ctrlOut] = align(pixelIn,ctrlIn,refPixel,refCtrl)

Description

[pixelOut,refOut,ctrlOut] = align(pixelIn,ctrlIn,refPixel,refCtrl) synchronizes a
pixel stream to a reference stream, refPixel and refCtrl, by delaying the first input, pixelIn, to
align with the reference input. The resulting aligned pixel streams, pixelOut and refOut, share the
control signals, ctrlOut. You can use this object to align streams for overlay or comparison.

This object uses a streaming pixel interface with a structure for frame control signals. This interface
enables the object to operate independently of image size and format, and to connect with other
Vision HDL Toolbox objects. The object accepts and returns a scalar pixel value and control signals as
a structure containing five signals. The control signals indicate the validity of each pixel and its
location in the frame. To convert a pixel matrix into a pixel stream and control signals, use the
visionhdl.FrameToPixels object. For a full description of the interface, see “Streaming Pixel
Interface”.

Input Arguments

pixelIn — Input pixel stream
scalar | row vector

Input pixel stream, specified as a scalar intensity value or a row vector of three values representing
one pixel in R'G'B' or Y'CbCr color space. Because the object delays this pixel stream to match the
control signals of the reference stream, refPixel pixelIn must be the earlier of the two streams.

You can simulate System objects with a multipixel streaming interface, but System objects that use
multipixel streams are not supported for HDL code generation. Use the equivalent blocks to generate
HDL code for multipixel algorithms.

double and single data types are supported for simulation, but not for HDL code generation.
Data Types: fi | int8 | int16 | int32 | uint8 | uint16 | uint32 | logical | double | single

ctrlIn — Control signals accompanying input pixel stream
pixelcontrol structure

Control signals accompanying input pixel stream, specified as a pixelcontrol structure containing
five logical data type signals. The signals describe the validity of the pixel and its location in the
frame. For more details, see “Pixel Control Structure”.
Data Types: struct

refPixel — Input pixel
scalar | vector

Input pixel, specified as a scalar intensity value or a row vector of three values representing one pixel
in R'G'B' or Y'CbCr colorspace. Because the object delays the pixelIn input stream to match the
reference control signals, refPixel must be the later of the two streams. The reference data and its
control signals pass through the object with a small delay.

You can simulate System objects with a multipixel streaming interface, but System objects that use
multipixel streams are not supported for HDL code generation. Use the equivalent blocks to generate
HDL code for multipixel algorithms.

double and single data types are supported for simulation, but not for HDL code generation.

 visionhdl.PixelStreamAligner

2-169

Data Types: fi | int8 | int16 | int32 | uint8 | uint16 | uint32 | logical | double | single

refCtrl — Reference pixel stream control signals
structure

Reference pixel stream control signals, specified as a structure containing five logical signals. The
object uses these control signals for the aligned output stream. For more details, see “Pixel Control
Structure”.

Output Arguments

pixelOut — Output pixel
scalar | row vector

Output pixel, returned as a scalar intensity value or a row vector of three values representing one
pixel in R'G'B' or Y'CbCr color space.

The data type is the same as the data type of pixelIn.

refOut — Output reference pixel
scalar | row vector

Output reference pixel, returned as a scalar intensity value or a row vector of three values
representing one pixel in R'G'B' or Y'CbCr color space.

The data type is the same as the data type of refIn.

ctrlOut — Pixel stream control signals
structure

Pixel stream control signals for both output streams, returned as a structure containing five logical
signals. For more details, see “Pixel Control Structure”. These signals are a delayed version of the
refCtrl input.

Object Functions
To use an object function, specify the System object as the first input argument. For example, to
release system resources of a System object named obj, use this syntax:

release(obj)

Common to All System Objects
step Run System object algorithm
release Release resources and allow changes to System object property values and input

characteristics
reset Reset internal states of System object

Examples

Align Pixel Streams for HDL Generation

Overlay a processed video stream on the input stream.

2 System Objects

2-170

Prepare a test image by selecting a portion of an image file.

frmActivePixels = 64;
frmActiveLines = 48;
frmOrig = imread('rice.png');
frmInput = frmOrig(1:frmActiveLines,1:frmActivePixels);
figure
imshow(frmInput,'InitialMagnification',300)
title 'Input Image'

Create a serializer and specify the size of the inactive pixel regions.

frm2pix = visionhdl.FrameToPixels(...
 'NumComponents',1, ...
 'VideoFormat','custom', ...
 'ActivePixelsPerLine',frmActivePixels, ...
 'ActiveVideoLines',frmActiveLines, ...
 'TotalPixelsPerLine',frmActivePixels+10, ...
 'TotalVideoLines',frmActiveLines+10, ...
 'StartingActiveLine',6, ...
 'FrontPorch',5);

Serialize the test image. pixIn is a vector of intensity values. ctrlIn is a vector of control signal
structures. Preallocate vectors for the output signals.

[pixIn,ctrlIn] = frm2pix(frmInput);

[~,~,numPixelsPerFrame] = getparamfromfrm2pix(frm2pix);
ctrlOut = repmat(pixelcontrolstruct,numPixelsPerFrame,1);
overlayOut = zeros(numPixelsPerFrame,1,'uint8');

Write a function that creates and calls the System objects to detect edges and align the edge data
with the original pixel data. The edge results are delayed by the latency of the
visionhdl.EdgeDetector object. The associated control signals become the reference for the
aligned stream. You can generate HDL from this function.

function [pixelOut,ctrlOut] = EdgeDetectandOverlay(pixelIn,ctrlIn)
% EdgeDetectandOverlay
% Detect edges in an input stream, and overlay the edge data onto the

 visionhdl.PixelStreamAligner

2-171

% original stream.
% pixelIn and ctrlIn are a scalar pixel and its associated pixelcontrol
% structure, respectively.
% You can generate HDL code from this function.

 persistent align
 if isempty(align)
 align = visionhdl.PixelStreamAligner;
 end

 persistent find_edges
 if isempty(find_edges)
 find_edges = visionhdl.EdgeDetector;
 end

 [edgeOut,edgeCtrl] = find_edges(pixelIn,ctrlIn);
 [origOut,alignedEdgeOut,ctrlOut] = align(pixelIn,ctrlIn,edgeOut,edgeCtrl);
 if (alignedEdgeOut)
 pixelOut = uint8(0); % Set edge pixels to black
 else
 pixelOut = origOut;
 end
end

For each pixel in the frame, call the function to search for edges and align the edge data with the
input stream.

for p = 1:numPixelsPerFrame
 [overlayOut(p),ctrlOut(p)] = EdgeDetectandOverlay(pixIn(p),ctrlIn(p));
end

Create a deserializer object with a format matching that of the serializer. Convert the pixel stream to
an image frame by calling the deserializer object. Display the resulting image.

pix2frm = visionhdl.PixelsToFrame(...
 'NumComponents',1, ...
 'VideoFormat','custom', ...
 'ActivePixelsPerLine',frmActivePixels, ...
 'ActiveVideoLines',frmActiveLines);
[frmOutput,frmValid] = pix2frm(overlayOut,ctrlOut);
if frmValid
 figure
 imshow(frmOutput,'InitialMagnification',300)
 title 'Output Image'
end

2 System Objects

2-172

See Also
Blocks
Pixel Stream Aligner

Objects
visionhdl.FrameToPixels

Introduced in R2017a

 visionhdl.PixelStreamAligner

2-173

visionhdl.PixelsToFrame
Package: visionhdl

Convert pixel stream to frame-based video

Description
visionhdl.PixelsToFrame converts a color or grayscale pixel stream and control structures into
frame-based video. The control structure indicates the validity of each pixel and its location in the
frame. The pixel stream format can include padding pixels around the active frame. You can configure
the frame and padding dimensions by selecting a common video format or specifying custom
dimensions. See “Streaming Pixel Interface” for details of the pixel stream format.

Use this object to convert the output of a function targeted for HDL code generation back to frames.
This object does not support HDL code generation.

If your design converts frames to a pixel stream and later converts the stream back to frames, specify
the same video format for the FrameToPixels object and the PixelsToFrame object.

Note Starting in R2016b, instead of using the step method to perform the operation defined by the
System object, you can call the object with arguments, as if it were a function. For example, y =
step(obj,x) and y = obj(x) perform equivalent operations.

Construction
P2F = visionhdl.PixelsToFrame returns a System object, P2F, that converts a 1080p pixel
stream, with standard padding, to a grayscale 1080×1920 frame.

P2F = visionhdl.PixelsToFrame(Name,Value) returns a System object, P2F, with additional
options specified by one or more Name,Value pair arguments. Name is a property name on page 2-
174 and Value is the corresponding value. Name must appear inside single quotes (''). You can
specify several name-value pair arguments in any order as Name1,Value1,...,NameN,ValueN.
Properties not specified retain their default values.

Properties
NumComponents

Components of each pixel, specified as 1, 3, or 4. Set to 1 for grayscale video. Set to 3 for color video,
for example, {R,G,B} or {Y,Cb,Cr}. Set to 4 to use color with an alpha channel for transparency. The
visionhdl.PixelsToFrame object expects a matrix of P-by-NumComponents values, where P is the
total number of pixels. The default is 1.

NumPixels

Number of pixels transferred on the streaming interface for each cycle, specified as 1, 4, or 8. The
default is 1. To enable multipixel streaming and increase throughput for high-resolution or high-
frame-rate video, set this property to 4 or 8. The visionhdl.PixelsToFrame object expects a P-by-

2 System Objects

2-174

NumPixels matrix, where P is the total number of pixels. When you set NumPixels>1, you must set
the NumComponents property to 1.

Note You can simulate System objects with a multipixel streaming interface, but they are not
supported for HDL code generation. Use the equivalent blocks to generate HDL code for multipixel
algorithms.

VideoFormat

Dimensions of the active region of a video frame. To select a predefined format, specify the
VideoFormat property as one of the options in the first column of the table. For a custom format, set
VideoFormat to 'Custom', and specify the dimensional properties as integers.

Video Format Active Pixels Per
Line

Active Video Lines

240p 320 240
480p 640 480
480pH 720 480
576p 720 576
720p 1280 720
768p 1024 768
1024p 1280 1024
1080p (default) 1920 1080
1200p 1600 1200
2KCinema 2048 1080
4KUHDTV 3840 2160
8KUHDTV 7680 4320
Custom User-

defined
User-
defined

Methods
step Convert pixel stream to image frame

Common to All System Objects
release Allow System object property value changes

Examples

Convert Between Full-Frame and Pixel-Streaming Data

This example converts a custom-size grayscale image to a pixel stream. It uses the
visionhdl.LookupTable object to obtain the negative image. Then it converts the pixel-stream
back to a full-frame image.

 visionhdl.PixelsToFrame

2-175

Load the source image from a file. Select a portion of the image matching the desired test size.

frmOrig = imread('rice.png');
frmActivePixels = 64;
frmActiveLines = 48;
frmInput = frmOrig(1:frmActiveLines,1:frmActivePixels);
figure
imshow(frmInput,'InitialMagnification',300)
title 'Input Image'

Create a serializer object and specify size of inactive pixel regions.

frm2pix = visionhdl.FrameToPixels(...
 'NumComponents',1,...
 'VideoFormat','custom',...
 'ActivePixelsPerLine',frmActivePixels,...
 'ActiveVideoLines',frmActiveLines,...
 'TotalPixelsPerLine',frmActivePixels+10,...
 'TotalVideoLines',frmActiveLines+10,...
 'StartingActiveLine',6,...
 'FrontPorch',5);

Create a lookup table (LUT) object to generate the negative of the input image.

tabledata = linspace(255,0,256);
inverter = visionhdl.LookupTable(tabledata);

Serialize the test image by calling the serializer object. pixIn is a vector of intensity values. ctrlIn
is a vector of control signal structures.

Note: This object syntax runs only in R2016b or later. If you are using an earlier release, replace
each call of an object with the equivalent step syntax. For example, replace myObject(x) with
step(myObject,x).

[pixIn,ctrlIn] = frm2pix(frmInput);

Prepare to process pixels by preallocating output vectors.

[~,~,numPixelsPerFrame] = getparamfromfrm2pix(frm2pix);
pixOut = zeros(numPixelsPerFrame,1,'uint8');
ctrlOut = repmat(pixelcontrolstruct,numPixelsPerFrame,1);

2 System Objects

2-176

For each pixel in the stream, look up the negative of the pixel value.

for p = 1:numPixelsPerFrame
 [pixOut(p),ctrlOut(p)] = inverter(pixIn(p),ctrlIn(p));
end

Create a deserializer object with a format matching that of the serializer. Convert the pixel stream to
an image frame by calling the deserializer object. Display the resulting image.

pix2frm = visionhdl.PixelsToFrame(...
 'NumComponents',1,...
 'VideoFormat','custom',...
 'ActivePixelsPerLine',frmActivePixels,...
 'ActiveVideoLines',frmActiveLines);
[frmOutput,frmValid] = pix2frm(pixOut,ctrlOut);
if frmValid
 figure
 imshow(frmOutput,'InitialMagnification',300)
 title 'Output Image'
end

See Also
Pixels To Frame | visionhdl.FrameToPixels

Topics
“Pixel-Streaming Design in MATLAB”
“Streaming Pixel Interface”

Introduced in R2015a

 visionhdl.PixelsToFrame

2-177

step
System object: visionhdl.PixelsToFrame
Package: visionhdl

Convert pixel stream to image frame

Syntax
[frm,validOut] = step(P2F,pixels,ctrlIn)

Description

Note Starting in R2016b, instead of using the step method to perform the operation defined by the
System object, you can call the object with arguments, as if it were a function. For example, y =
step(obj,x) and y = obj(x) perform equivalent operations.

[frm,validOut] = step(P2F,pixels,ctrlIn) converts a vector of pixel values representing a
padded image, pixels, and an associated vector of control structures, ctrlIn, to an image matrix,
frm. The control structure indicates the validity of each pixel and its location in the frame. The output
image, frm is valid if validOut is true.

See “Streaming Pixel Interface” for details of the pixel stream format.

Note The System object performs an initialization the first time you call the step method. This
initialization locks nontunable properties and input specifications, such as dimensions, complexity,
and data type of the input data. If you change a nontunable property or an input specification, the
object issues an error. To change nontunable properties or inputs, first call the release method to
unlock the object.

Input Arguments
P2F — Deserializer
visionhdl.PixelsToFrame System object

Specify a visionhdl.PixelsToFrame System object that you created and configured.

pixels — Input pixels
matrix

Pixel values, specified as a P-by-NumComponents matrix, or P-by-NumPixels matrix, where:

• P is the total number of pixels in the padded image, calculated as TotalPixelsPerLine ×
TotalVideoLines.

• NumComponents is the number of components used to express a single pixel.
• NumPixels is the number of pixels transferred on the streaming interface per cycle. When

NumPixels is greater than 1, you must set NumComponents to 1.

2 System Objects

2-178

Note You can simulate System objects with a multipixel streaming interface, but they are not
supported for HDL code generation. Use the equivalent blocks to generate HDL code for
multipixel algorithms.

Set the size of the padded image using the VideoFormat property. If the number of elements in
pixels does not match that specified by VideoFormat, The object returns a warning.

Supported data types:

• uint or int
• fixdt()
• logical
• double or single

ctrlIn — Pixel stream control signals
vector of structures

Control structures associated with the input pixels, specified as a P-by-1 vector. P is the total number
of pixels in the padded image, calculated as TotalPixelsPerLine × TotalVideoLines. Each
structure contains five control signals indicating the validity of the pixel and its location in the frame.
For multipixel streaming, the control signals apply to each set of NumPixels values. See “Pixel
Control Structure”. If the dimensions indicated by ctrlIn do not match that specified by
VideoFormat, the object returns a warning.

Output Arguments
frm — Image frame
matrix

Image frame, returned as an ActiveVideoLines-by-ActivePixelsPerLine-by-NumComponents
matrix, where:

• ActiveVideoLines is the height of the active image
• ActivePixelsPerLine is the width of the active image
• NumComponents is the number of components used to express a single pixel

Set the size of the active image using the VideoFormat property. The data type of the pixel values is
the same as pixels.

validOut — Indicates valid output data
scalar logical

Frame status, returned as a logical value. When validOut is true, the frame is reassembled and
ready for use.

Introduced in R2015a

 step

2-179

visionhdl.ROISelector
Package: visionhdl

Select region of interest (ROI) from pixel stream

Description
The visionhdl.ROISelector System object selects a portion of the active frame from a video
stream. The total size of the frame remains the same. The output control signals indicate a new active
region of the frame. This diagram shows the inactive pixel regions in blue and the requested output
region outlined in orange.

You can specify a fixed size and location for the ROI, or you can select the frame location dynamically
by using an input argument. You can select more than one region. Define each region by specifying its
upper-left corner coordinates and dimensions. The object returns one set of pixels and control signals
for each region you specify. The object sets the inactive pixels in the output frame to zero.

Regions are independent from each other, so they can overlap. If you specify a region that includes
the edge of the active frame, the object returns only the active portion of the region. This diagram
shows the output frames for three requested regions. The second output region does not include the
inactive region above the frame.

The object also provides a mode for vertical reuse. In this mode, you must specify regions that have
no vertical overlap and are aligned in columns. Each column of regions shares one output pixel

2 System Objects

2-180

stream. The control signals define each region in the stream. This arrangement enables parallel
processing of each column, and the reuse of downstream processing logic for each region in a
column. To use this mode, set the VerticalReuse property to true. Use the
visionhdlframetoregions function to divide a frame into tiled regions for vertical reuse.

To select regions of interest (ROIs) from a pixel stream:

1 Create the visionhdl.ROISelector object and set its properties.
2 Call the object with arguments, as if it were a function.

To learn more about how System objects work, see What Are System Objects?.

Creation

Syntax
ROI = visionhdl.ROISelector(Name,Value)
[pixel1,ctrl1] = ROI(pixelIn,ctrlIn)
[pixel1,ctrl1,...,pixelN,ctrlN] = ROI(pixelIn,ctrlIn)
[pixel1,ctrl1,...,pixelN,ctrlN] = ROI(pixelIn,ctrlIn,region1,...,regionN)

Description

ROI = visionhdl.ROISelector(Name,Value) creates a System object that selects regions of
the active frame from an input stream. Set properties using one or more name-value pairs. Enclose
each property name in single quotes. For example,.'Regions',[1 1 32 24] configures the object
to select a 32-by-24 pixel region in the top-left corner of the frame.

Properties
Unless otherwise indicated, properties are nontunable, which means you cannot change their values
after calling the object. Objects lock when you call them, and the release function unlocks them.

If a property is tunable, you can change its value at any time.

For more information on changing property values, see System Design in MATLAB Using System
Objects.

 visionhdl.ROISelector

2-181

VerticalReuse — Option to return one pixel stream for each column of regions
false (default) | true

Option to return one pixel stream for each column of regions, specified as false or true. When you
set this property to true, you must specify regions that have no vertical overlap and that are aligned
in columns. The object has one output pixel stream for each column of regions. This arrangement
enables parallel processing of each column and the reuse of downstream processing logic for each
region in a column. Use the visionhdlframetoregions function to divide a frame into tiled
regions for vertical reuse.

Dependencies

To enable this property, set the RegionsSource property to 'Property'.

RegionsSource — Location of output region definitions
'Property' (default) | 'Input port'

Location of the output region definitions, specified as one of these values:

'Property' — Specify the regions by using the Regions property.

'Input port' — Specify the regions by using input arguments to the object. Each input argument
is a four-element row vector corresponding to one region. The object captures the value of the
region input arguments when it receives vStart set to true in the input control structure.

Dependencies

To enable this property, set the VerticalReuse property to false.

Regions — Rectangular ROIs to select from input frame
[100 100 50 50] (default) | N-by-4 matrix

Rectangular regions of interest to select from the input frame, specified as an N-by-4 matrix.

N is the number of regions. The four elements that define each region are the top-left starting
coordinates and dimensions of the region and must be of the form [hPos vPos hSize vSize]. The
coordinates count from the upper-left corner of the active frame, defined as [1,1]. hSize must be
greater than 1.

When you set the VerticalReuse property to false, the regions are independent of each other, so
they can overlap. N must not be greater than 16.

When you set the VerticalReuse property to true, the regions in this matrix must have no vertical
overlap and be aligned in columns. This diagram shows two examples of invalid regions outlined with
a blue dashed line. The region on the left overlaps another region vertically. The two regions at the
bottom do not align with the other regions in their columns. The regions do not have to cover the
entire frame. Pixels outside of the tiled regions are marked as inactive pixels. The number of columns
must not be greater than 16.

2 System Objects

2-182

Dependencies

To enable this parameter, set the RegionsSource property to 'Property'.

NumberofRegions — Number of region input arguments
1 (default) | integer in the range [1, 16]

Number of region input arguments to the object, specified as an integer in the range [1, 16].

Dependencies

To enable this parameter, set the RegionsSource property to 'Input port'.

Usage

Syntax
ROI = visionhdl.ROISelector(Name,Value)
[pixel1,ctrl1] = ROI(pixelIn,ctrlIn)
[pixel1,ctrl1,...,pixelN,ctrlN] = ROI(pixelIn,ctrlIn)
[pixel1,ctrl1,...,pixelN,ctrlN] = ROI(pixelIn,ctrlIn,region1,...,regionN)

Description

[pixel1,ctrl1] = ROI(pixelIn,ctrlIn) returns the next pixel value, pixel1, and control
signals, ctrl1, resulting from masking the active image frame into a single new region. Define the
region by setting the Regions property to a four-element row vector, [hPos vPos hSize vSize].

[pixel1,ctrl1,...,pixelN,ctrlN] = ROI(pixelIn,ctrlIn) returns the next pixel values,
pixel1,...,pixelN, and control signals, ctrl1,...,ctrlN, of each stream resulting from
masking the active image frame. When you set the VerticalReuse property to false, each output
stream contains one active region, and the number of streams is the NumberOfRegions property
value or the number of rows in the Regions matrix. When you set the VerticalReuse property to
true, each output stream contains a set of vertically-aligned regions. In both cases, define the
regions by setting the Regions property to an N-by-4 matrix of ROI coordinates.

 visionhdl.ROISelector

2-183

[pixel1,ctrl1,...,pixelN,ctrlN] = ROI(pixelIn,ctrlIn,region1,...,regionN)
returns the next pixel values of each stream, pixel1,...,pixelN, resulting from masking the
active image frame into 1 to N new regions, as directed by the region1,...,regionN arguments.
Each region input is a four-element row vector of ROI coordinates. Use this syntax when you set the
RegionsSource property to 'Input Port', and the NumberOfRegions property to N.

This object uses a streaming pixel interface with a structure for frame control signals. This interface
enables the object to operate independently of image size and format, and to connect with other
Vision HDL Toolbox objects. The object accepts and returns a scalar pixel value and control signals as
a structure containing five signals. The control signals indicate the validity of each pixel and its
location in the frame. To convert a pixel matrix into a pixel stream and control signals, use the
visionhdl.FrameToPixels object. For a full description of the interface, see “Streaming Pixel
Interface”.

Input Arguments

pixelIn — Single image pixel
scalar

Single image pixel in a pixel stream, specified as a scalar value representing intensity.

double and single data types are supported for simulation, but not for HDL code generation.
Data Types: uint8 | uint16 | uint32 | int8 | int16 | int32 | fi | logical | double | single

ctrlIn — Control signals accompanying input pixel stream
pixelcontrol structure

Control signals accompanying input pixel stream, specified as a pixelcontrol structure containing
five logical data type signals. The signals describe the validity of the pixel and its location in the
frame. For more details, see “Pixel Control Structure”.
Data Types: struct

region1,...,regionN — Region of interest
four-element row vector

Region of interest, specified as a row vector of four positive integers that define the coordinates of
the top-left corner and dimensions of each desired output frame. The vector must have the form
[hPos vPos hSize vSize]. Specify N region arguments, where N is the NumberOfRegions
property value.

Dependencies

To enable this argument, clear the VerticalReuse property to false and set the RegionsSource
property to 'Input Port'.
Data Types: int8 | int16 | int32 | int64 | uint8 | uint16 | uint32 | uint64

Output Arguments

pixel1,...,pixelN — Output pixel
scalar

Output pixel, returned as a scalar value. The output data type is the same data type as the input
pixelIn argument. By default, the number of output pixel arguments is the NumberOfRegions

2 System Objects

2-184

property value, or the number of rows in the Regions property matrix. When you set
VerticalReuse to true, the object has one output pixel argument for each column of vertically-
aligned regions.

ctrl1,...,ctrlN — Pixel stream control signals
structure

Pixel stream control signals indicating the validity of each output pixel and its location within the
frame, returned as a structure of five logical signals. For more details, see “Pixel Control
Structure”.

By default, the number of output control arguments is the NumberOfRegions property value, or the
number of rows in the Regions property matrix. When you set VerticalReuse to true, the object
has one output control argument for each column of vertically-aligned regions.
Data Types: struct

Object Functions
To use an object function, specify the System object as the first input argument. For example, to
release system resources of a System object named obj, use this syntax:

release(obj)

Common to All System Objects
step Run System object algorithm
release Release resources and allow changes to System object property values and input

characteristics
reset Reset internal states of System object

Examples

Select Fixed ROI from Input Frame

Load a source image from a file, and then display the image.

frmOrig = imread('coins.png');
[frmActiveLines,frmActivePixels] = size(frmOrig);
imshow(frmOrig)
title 'Input Image'

 visionhdl.ROISelector

2-185

Create a serializer object and define inactive pixel regions.

frm2pix = visionhdl.FrameToPixels(...
 'NumComponents',1, ...
 'VideoFormat','custom', ...
 'ActivePixelsPerLine',frmActivePixels, ...
 'ActiveVideoLines',frmActiveLines, ...
 'TotalPixelsPerLine',frmActivePixels+20, ...
 'TotalVideoLines',frmActiveLines+20, ...
 'StartingActiveLine',3, ...
 'FrontPorch',10);

Create an object to select a region of interest. Define a rectangular region by the coordinates of its
top-left corner and dimensions.

hPos = 80;
vPos = 60;
hSize = 65;
vSize = 50;
roicoin = visionhdl.ROISelector('Regions',[hPos vPos hSize vSize])

roicoin =
 visionhdl.ROISelector with properties:

 VerticalReuse: false
 RegionsSource: 'Property'
 Regions: [80 60 65 50]

Serialize the test image by calling the serializer object. pixIn is a vector of intensity values. ctrlIn
is a vector of control signal structures.

[pixIn,ctrlIn] = frm2pix(frmOrig);

2 System Objects

2-186

Prepare to process pixels by preallocating output vectors. The output frame is the same size as the
input frame, but the control signals indicate a different active region.

[~,~,numPixelsPerFrame] = getparamfromfrm2pix(frm2pix);
pixOut = uint8(zeros(numPixelsPerFrame,1));
ctrlOut = repmat(pixelcontrolstruct,numPixelsPerFrame,1);

For each pixel in the padded frame, apply the region mask.

for p = 1:numPixelsPerFrame
 [pixOut(p),ctrlOut(p)] = roicoin(pixIn(p),ctrlIn(p));
end

Create a deserializer object with a format that matches the new region. Convert the pixel stream to
an image frame by calling the deserializer object. Display the resulting image.

pix2frm = visionhdl.PixelsToFrame(...
 'NumComponents',1, ...
 'VideoFormat','custom', ...
 'ActivePixelsPerLine',hSize, ...
 'ActiveVideoLines',vSize);
[frmOutput,frmValid] = pix2frm(pixOut,ctrlOut);
if frmValid
 figure
 imshow(frmOutput)
 title 'Output Image'
end

Algorithms
The generated HDL code for the visionhdl.ROISelector System object uses two 32-bit counters.
The object does not use additional counters for additional regions.

Latency

The object has a latency of three cycles.

See Also
Blocks
ROI Selector

Objects
visionhdl.FrameToPixels

 visionhdl.ROISelector

2-187

Functions
visionhdlframetoregions

Introduced in R2016a

2 System Objects

2-188

Functions

3

getparamfromfrm2pix
Get frame format parameters

Syntax
[activePixelsPerLine,activeLines,numPixelsPerFrame] = getparamfromfrm2pix(
frm2pix)

Description
[activePixelsPerLine,activeLines,numPixelsPerFrame] = getparamfromfrm2pix(
frm2pix) returns video format parameters from a visionhdl.FrameToPixels System object.

Examples

Configure Pixel Stream Format

When you choose a standard video format for visionhdl.FrameToPixels, the object computes the
frame dimensions. To access these values, call the getparamfromfrm2pix function.

frm2pix = visionhdl.FrameToPixels(...
 'NumComponents',1,...
 'VideoFormat','240p');
[activePixels,activeLines,numPixelsPerFrame] = getparamfromfrm2pix(frm2pix)

activePixels = 320

activeLines = 240

numPixelsPerFrame = 130248

Note that numPixelsPerFrame includes both active and inactive regions of the frame.

Input Arguments
frm2pix — Video serializer
visionhdl.FrameToPixels System object

The visionhdl.FrameToPixels object converts framed video to a stream of pixel values and
control signals. It contains useful parameters regarding the video format.

Output Arguments
activePixelsPerLine — Number of pixels in a horizontal line of the active video frame
positive integer

Number of pixels in a horizontal line of the active video frame, returned as a positive integer.

3 Functions

3-2

For custom video formats, this value corresponds to the ActivePixelsPerLine property of the
frm2pix object.

activeLines — Number of horizontal lines in the active video frame
positive integer

Number of horizontal lines in the active video frame, returned as a positive integer.

For custom video formats, this value corresponds to the ActiveVideoLines property of the
frm2pix object.

numPixelsPerFrame — Number of active and inactive pixels in the video frame
positive integer

Number of active and inactive pixels in the video frame, returned as a positive integer.

For custom video formats, this value corresponds to the product of the TotalVideoLines and
TotalPixelsPerLine properties of the frm2pix object.

See Also
Frame To Pixels | Pixels To Frame

Topics
“Streaming Pixel Interface”

Introduced in R2015a

 getparamfromfrm2pix

3-3

pixelcontrolbus
Create pixel-streaming control bus instance

Syntax
pixelcontrolbus

Description
pixelcontrolbus declares a bus instance in the workspace. This instance is required for HDL code
generation. Call this function before you generate HDL code from Vision HDL Toolbox blocks.

Examples

Declare Bus in Base Workspace

• In the InitFcn callback function of your Simulink model, include this line to declare a bus
instance in the base workspace. If you create your model with the Vision HDL Toolbox model
template, this is done for you.

evalin('base','pixelcontrolbus')

If you do not declare an instance of pixelcontrolbus in the base workspace, you might
encounter this error when you generate HDL code in Simulink.

Cannot resolve variable 'pixelcontrol'

See Also
“Pixel Control Bus” | Frame To Pixels | Pixels To Frame

Topics
“Configure the Simulink Environment for HDL Video Processing”
“Streaming Pixel Interface”

Introduced in R2015a

3 Functions

3-4

pixelcontrolsignals
Extract signals from pixel-streaming control signal structure

Syntax
[hStart,hEnd,vStart,vEnd,valid] = pixelcontrolsignals(ctrl)

Description
[hStart,hEnd,vStart,vEnd,valid] = pixelcontrolsignals(ctrl) extracts five scalar
logical control signals from a structure.

Examples

Create and Decompose pixelcontrol structures

If you integrate Vision HDL Toolbox designs with algorithms that use a different interface, you may
need to create the structure manually, or manipulate the control signals outside of the structure.

Create a pixelcontrol structure by passing five control signal values to the
pixelcontrolstruct function. The function arguments must be scalar values. These control
signals may come from a camera or other video input source. The control signal vectors in this
example describe a simple 2-by-3 pixel test image, surrounded by padding pixels.

hStart = [0 0 0 0 0 0 0 1 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0];
vStart = [0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0];
hEnd = [0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 1 0 0 0 0 0 0 0 0];
vEnd = [0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0];
valid = [0 0 0 0 0 0 0 1 1 1 0 0 0 1 1 1 0 0 0 0 0 0 0 0];
pixel = uint8([0 0 0 0 0 0 0 30 60 90 0 0 0 120 150 180 0 0 0 0 0 0 0 0]);
[~,numPix] = size(pixel);
ctrlIn = repmat(pixelcontrolstruct,numPix,1);
for i = 1:numPix
 ctrlIn(i) = pixelcontrolstruct(hStart(i),vStart(i),...
 hEnd(i),vEnd(i),valid(i));
end

 pixelcontrolsignals

3-5

Each element of ctrlIn is a structure containing the five control signals.

ctrlIn(8)

ans = struct with fields:
 hStart: 1
 hEnd: 1
 vStart: 0
 vEnd: 0
 valid: 1

You can then pass this structure to a Vision HDL Toolbox System object. This example uses the
LookupTable object to invert each pixel.

Note: This object syntax runs only in R2016b or later. If you are using an earlier release, replace
each call of an object with the equivalent step syntax. For example, replace myObject(x) with
step(myObject,x).

tabledata = uint8(linspace(255,0,256));
inverter = visionhdl.LookupTable(tabledata);
pixelOut = zeros(numPix,1,'uint8');
ctrlOut = repmat(pixelcontrolstruct,numPix,1);

for i = 1:numPix
 [pixelOut(i),ctrlOut(i)] = inverter(pixel(i),ctrlIn(i));
end

If you need to use the control signals directly in downstream algorithms, you can flatten each
structure into five logical control signal values by calling the pixelcontrolsignals function.

[hStartOut,vStartOut,hEndOut,vEndOut,validOut] = deal(false(numPix,1));
for i = 1:numPix
 [hStartOut(i),vStartOut(i),hEndOut(i),vEndOut(i),validOut(i)] = ...
 pixelcontrolsignals(ctrlOut(i));
end

Each output control signal is a vector of logical values that correspond with the pixelOut vector.

validOut'

ans = 1x24 logical array

 0 0 0 0 0 0 0 0 0 1 1 1 0 0 0 1 1 1 0 0 0 0 0 0

Input Arguments
ctrl — Pixel control signals
structure containing five logical values

Pixel control signals, specified as a structure containing five logical values.

The pixel control structure is a specific format used by Vision HDL Toolbox objects. See “Pixel Control
Structure”.

3 Functions

3-6

Output Arguments
hStart — Control signal indicating the first pixel in a horizontal line
logical

Control signal indicating the first pixel in a horizontal line, specified as a logical scalar.

hEnd — Control signal indicating the last pixel in a horizontal line
logical

Control signal indicating the last pixel in a horizontal line, specified as a logical scalar.

vStart — Control signal indicating the first pixel in the first (top) line
logical

Control signal indicating the first pixel in the first (top) line, specified as a logical scalar.

vEnd — Control signal indicating the last pixel in the last (bottom) line
logical

Control signal indicating the last pixel in the last (bottom) line, specified as a logical scalar.

valid — Control signal indicating the validity of the pixel
logical

Control signal indicating the validity of the pixel, specified as a logical scalar.

See Also
pixelcontrolstruct | visionhdl.FrameToPixels | visionhdl.PixelsToFrame

Topics
“Streaming Pixel Interface”

Introduced in R2015a

 pixelcontrolsignals

3-7

pixelcontrolstruct
Create pixel-streaming control signal structure

Syntax
ctrl = pixelcontrolstruct(hStart,hEnd,vStart,vEnd,valid)

Description
ctrl = pixelcontrolstruct(hStart,hEnd,vStart,vEnd,valid) creates a structure
containing the five control signals used by Vision HDL Toolbox objects. The input arguments must be
five scalars of logical type. See “Pixel Control Structure”.

Examples

Create and Decompose pixelcontrol structures

If you integrate Vision HDL Toolbox designs with algorithms that use a different interface, you may
need to create the structure manually, or manipulate the control signals outside of the structure.

Create a pixelcontrol structure by passing five control signal values to the
pixelcontrolstruct function. The function arguments must be scalar values. These control
signals may come from a camera or other video input source. The control signal vectors in this
example describe a simple 2-by-3 pixel test image, surrounded by padding pixels.

hStart = [0 0 0 0 0 0 0 1 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0];
vStart = [0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0];
hEnd = [0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 1 0 0 0 0 0 0 0 0];
vEnd = [0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0];
valid = [0 0 0 0 0 0 0 1 1 1 0 0 0 1 1 1 0 0 0 0 0 0 0 0];
pixel = uint8([0 0 0 0 0 0 0 30 60 90 0 0 0 120 150 180 0 0 0 0 0 0 0 0]);
[~,numPix] = size(pixel);
ctrlIn = repmat(pixelcontrolstruct,numPix,1);
for i = 1:numPix
 ctrlIn(i) = pixelcontrolstruct(hStart(i),vStart(i),...

3 Functions

3-8

 hEnd(i),vEnd(i),valid(i));
end

Each element of ctrlIn is a structure containing the five control signals.

ctrlIn(8)

ans = struct with fields:
 hStart: 1
 hEnd: 1
 vStart: 0
 vEnd: 0
 valid: 1

You can then pass this structure to a Vision HDL Toolbox System object. This example uses the
LookupTable object to invert each pixel.

Note: This object syntax runs only in R2016b or later. If you are using an earlier release, replace
each call of an object with the equivalent step syntax. For example, replace myObject(x) with
step(myObject,x).

tabledata = uint8(linspace(255,0,256));
inverter = visionhdl.LookupTable(tabledata);
pixelOut = zeros(numPix,1,'uint8');
ctrlOut = repmat(pixelcontrolstruct,numPix,1);

for i = 1:numPix
 [pixelOut(i),ctrlOut(i)] = inverter(pixel(i),ctrlIn(i));
end

If you need to use the control signals directly in downstream algorithms, you can flatten each
structure into five logical control signal values by calling the pixelcontrolsignals function.

[hStartOut,vStartOut,hEndOut,vEndOut,validOut] = deal(false(numPix,1));
for i = 1:numPix
 [hStartOut(i),vStartOut(i),hEndOut(i),vEndOut(i),validOut(i)] = ...
 pixelcontrolsignals(ctrlOut(i));
end

Each output control signal is a vector of logical values that correspond with the pixelOut vector.

validOut'

ans = 1x24 logical array

 0 0 0 0 0 0 0 0 0 1 1 1 0 0 0 1 1 1 0 0 0 0 0 0

Input Arguments
hStart — Control signal indicating the first pixel in a horizontal line
logical

Control signal indicating the first pixel in a horizontal line, specified as a logical scalar.

 pixelcontrolstruct

3-9

hEnd — Control signal indicating the last pixel in a horizontal line
logical

Control signal indicating the last pixel in a horizontal line, specified as a logical scalar.

vStart — Control signal indicating the first pixel in the first (top) line
logical

Control signal indicating the first pixel in the first (top) line, specified as a logical scalar.

vEnd — Control signal indicating the last pixel in the last (bottom) line
logical

Control signal indicating the last pixel in the last (bottom) line, specified as a logical scalar.

valid — Control signal indicating the validity of the pixel
logical

Control signal indicating the validity of the pixel, specified as a logical scalar.

Output Arguments
ctrl — Pixel control signals
structure containing five logical values

Pixel control signals, specified as a structure containing five logical values.

The pixel control structure is a specific format used by Vision HDL Toolbox objects. See “Pixel Control
Structure”.

See Also
pixelcontrolsignals | visionhdl.FrameToPixels | visionhdl.PixelsToFrame

Topics
“Streaming Pixel Interface”

Introduced in R2015a

3 Functions

3-10

Simulink.sdi.compareRuns
Package: Simulink.sdi

Compare data in two simulation runs

Syntax
diffResult = Simulink.sdi.compareRuns(runID1,runID2)
diffResult = Simulink.sdi.compareRuns(runID1,runID2,Name,Value)

Description
diffResult = Simulink.sdi.compareRuns(runID1,runID2) compares the data in the runs
that correspond to runID1 and runID2 and returns the result in the
Simulink.sdi.DiffRunResult object diffResult. The comparison uses the Simulation Data
Inspector comparison algorithm. For more information about the algorithm, see “How the Simulation
Data Inspector Compares Data” (Simulink).

diffResult = Simulink.sdi.compareRuns(runID1,runID2,Name,Value) compares the
simulation runs that correspond to runID1 and runID2 using the options specified by one or more
Name,Value pair arguments. For more information about how the options can affect the comparison,
see “How the Simulation Data Inspector Compares Data” (Simulink).

Examples

Compare Runs with Global Tolerance

You can specify global tolerance values to use when comparing two simulation runs. Global tolerance
values are applied to all signals within the run. This example shows how to specify global tolerance
values for a run comparison and how to analyze and save the comparison results.

First, load the session file that contains the data to compare. The session file contains data for four
simulations of an aircraft longitudinal controller. This example compares data from two runs that use
different input filter time constants.

Simulink.sdi.load('AircraftExample.mldatx');

To access the run data to compare, use the Simulink.sdi.getAllRunIDs (Simulink) function to
get the run IDs that correspond to the last two simulation runs.

runIDs = Simulink.sdi.getAllRunIDs;
runID1 = runIDs(end - 1);
runID2 = runIDs(end);

Use the Simulink.sdi.compareRuns (Simulink) function to compare the runs. Specify a global
relative tolerance value of 0.2 and a global time tolerance value of 0.5.

runResult = Simulink.sdi.compareRuns(runID1,runID2,'reltol',0.2,'timetol',0.5);

 Simulink.sdi.compareRuns

3-11

Check the Summary property of the returned Simulink.sdi.DiffRunResult object to see whether
signals were within the tolerance values or out of tolerance.

runResult.Summary

ans = struct with fields:
 OutOfTolerance: 0
 WithinTolerance: 3
 Unaligned: 0
 UnitsMismatch: 0
 Empty: 0
 Canceled: 0
 EmptySynced: 0
 DataTypeMismatch: 0
 TimeMismatch: 0
 StartStopMismatch: 0
 Unsupported: 0

All three signal comparison results fell within the specified global tolerance.

You can save the comparison results to an MLDATX file using the saveResult (Simulink) function.

saveResult(runResult,'InputFilterComparison');

Analyze Simulation Data Using Signal Tolerances

You can programmatically specify signal tolerance values to use in comparisons performed using the
Simulation Data Inspector. In this example, you compare data collected by simulating a model of an
aircraft longitudinal flight control system. Each simulation uses a different value for the input filter
time constant and logs the input and output signals. You analyze the effect of the time constant
change by comparing results using the Simulation Data Inspector and signal tolerances.

First, load the session file that contains the simulation data.

Simulink.sdi.load('AircraftExample.mldatx');

The session file contains four runs. In this example, you compare data from the first two runs in the
file. Access the Simulink.sdi.Run objects for the first two runs loaded from the file.

runIDs = Simulink.sdi.getAllRunIDs;
runIDTs1 = runIDs(end-3);
runIDTs2 = runIDs(end-2);

Now, compare the two runs without specifying any tolerances.

noTolDiffResult = Simulink.sdi.compareRuns(runIDTs1,runIDTs2);

Use the getResultByIndex function to access the comparison results for the q and alpha signals.

qResult = getResultByIndex(noTolDiffResult,1);
alphaResult = getResultByIndex(noTolDiffResult,2);

Check the Status of each signal result to see whether the comparison result fell within our out of
tolerance.

3 Functions

3-12

qResult.Status

ans =
OutOfTolerance

alphaResult.Status

ans =
OutOfTolerance

The comparison used a value of 0 for all tolerances, so the OutOfTolerance result means the
signals are not identical.

You can further analyze the effect of the time constant by specifying tolerance values for the signals.
Specify the tolerances by setting the properties for the Simulink.sdi.Signal objects that
correspond to the signals being compared. Comparisons use tolerances specified for the baseline
signals. This example specifies a time tolerance and an absolute tolerance.

To specify a tolerance, first access the Signal objects from the baseline run.

runTs1 = Simulink.sdi.getRun(runIDTs1);
qSig = getSignalsByName(runTs1,'q, rad/sec');
alphaSig = getSignalsByName(runTs1,'alpha, rad');

Specify an absolute tolerance of 0.1 and a time tolerance of 0.6 for the q signal using the AbsTol
and TimeTol properties.

qSig.AbsTol = 0.1;
qSig.TimeTol = 0.6;

Specify an absolute tolerance of 0.2 and a time tolerance of 0.8 for the alpha signal.

alphaSig.AbsTol = 0.2;
alphaSig.TimeTol = 0.8;

Compare the results again. Access the results from the comparison and check the Status property
for each signal.

tolDiffResult = Simulink.sdi.compareRuns(runIDTs1,runIDTs2);
qResult2 = getResultByIndex(tolDiffResult,1);
alphaResult2 = getResultByIndex(tolDiffResult,2);

qResult2.Status

ans =
WithinTolerance

alphaResult2.Status

ans =
WithinTolerance

Configure Comparisons to Check Metadata

You can use the Simulink.sdi.compareRuns function to compare signal data and metadata,
including data type and start and stop times. A single comparison may check for mismatches in one

 Simulink.sdi.compareRuns

3-13

or more pieces of metadata. When you check for mismatches in signal metadata, the Summary
property of the Simulink.sdi.DiffRunResult object may differ from a basic comparison because
the Status property for a Simulink.sdi.DiffSignalResult object can indicate the metadata
mismatch. You can configure comparisons using the Simulink.sdi.compareRuns function for
imported data and for data logged from a simulation.

This example configures a comparison of runs created from workspace data three ways to show how
the Summary of the DiffSignalResult object can provide specific information about signal
mismatches.

Create Workspace Data

The Simulink.sdi.compareRuns function compares time series data. Create data for a sine wave
to use as the baseline signal, using the timeseries format. Give the timeseries the name Wave
Data.

time = 0:0.1:20;
sig1vals = sin(2*pi/5*time);
sig1_ts = timeseries(sig1vals,time);
sig1_ts.Name = 'Wave Data';

Create a second sine wave to compare against the baseline signal. Use a slightly different time vector
and attenuate the signal so the two signals are not identical. Cast the signal data to the single data
type. Also name this timeseries object Wave Data. The Simulation Data Inspector comparison
algorithm will align these signals for comparison using the name.

time2 = 0:0.1:22;
sig2vals = single(0.98*sin(2*pi/5*time2));
sig2_ts = timeseries(sig2vals,time2);
sig2_ts.Name = 'Wave Data';

Create and Compare Runs in the Simulation Data Inspector

The Simulink.sdi.compareRuns function compares data contained in Simulink.sdi.Run
objects. Use the Simulink.sdi.createRun function to create runs in the Simulation Data
Inspector for the data. The Simulink.sdi.createRun function returns the run ID for each created
run.

runID1 = Simulink.sdi.createRun('Baseline Run','vars',sig1_ts);
runID2 = Simulink.sdi.createRun('Compare to Run','vars',sig2_ts);

You can use the Simulink.sdi.compareRuns function to compare the runs. The comparison
algorithm converts the signal data to the double data type and synchronizes the signal data before
computing the difference signal.

basic_DRR = Simulink.sdi.compareRuns(runID1,runID2);

Check the Summary property of the returned Simulink.sdi.DiffRunResult object to see the
result of the comparison.

basic_DRR.Summary

ans = struct with fields:
 OutOfTolerance: 1
 WithinTolerance: 0
 Unaligned: 0
 UnitsMismatch: 0

3 Functions

3-14

 Empty: 0
 Canceled: 0
 EmptySynced: 0
 DataTypeMismatch: 0
 TimeMismatch: 0
 StartStopMismatch: 0
 Unsupported: 0

The difference between the signals is out of tolerance.

Compare Runs and Check for Data Type Match

Depending on your system requirements, you may want the data types for signals you compare to
match. You can use the Simulink.sdi.compareRuns function to configure the comparison
algorithm to check for and report data type mismatches.

dataType_DRR = Simulink.sdi.compareRuns(runID1,runID2,'DataType','MustMatch');
dataType_DRR.Summary

ans = struct with fields:
 OutOfTolerance: 0
 WithinTolerance: 0
 Unaligned: 0
 UnitsMismatch: 0
 Empty: 0
 Canceled: 0
 EmptySynced: 0
 DataTypeMismatch: 1
 TimeMismatch: 0
 StartStopMismatch: 0
 Unsupported: 0

The result of the signal comparison is now DataTypeMismatch because the data for the baseline
signal is double data type, while the data for the signal compared to the baseline is single data
type.

Compare Runs and Check for Start and Stop Time Match

You can use the Simulink.sdi.compareRuns function to configure the comparison algorithm to
check whether the aligned signals have the same start and stop times.

startStop_DRR = Simulink.sdi.compareRuns(runID1,runID2,'StartStop','MustMatch');
startStop_DRR.Summary

ans = struct with fields:
 OutOfTolerance: 0
 WithinTolerance: 0
 Unaligned: 0
 UnitsMismatch: 0
 Empty: 0
 Canceled: 0
 EmptySynced: 0
 DataTypeMismatch: 0
 TimeMismatch: 0
 StartStopMismatch: 1
 Unsupported: 0

 Simulink.sdi.compareRuns

3-15

The signal comparison result is now StartStopMismatch because the signals created in the
workspace have different stop times.

Compare Runs with Alignment Criteria

When you compare runs using the Simulation Data Inspector, you can specify alignment criteria that
determine how signals are paired with each other for comparison. This example compares data from
simulations of a model of an aircraft longitudinal control system. The simulations used a square wave
input. The first simulation used an input filter time constant of 0.1s and the second simulation used
an input filter time constant of 0.5s.

First, load the simulation data from the session file that contains the data for this example.

Simulink.sdi.load('AircraftExample.mldatx');

The session file contains data for four simulations. This example compares data from the first two
runs. Access the run IDs for the first two runs loaded from the session file.

runIDs = Simulink.sdi.getAllRunIDs;
runIDTs1 = runIDs(end-3);
runIDTs2 = runIDs(end-2);

Before running the comparison, define how you want the Simulation Data Inspector to align the
signals between the runs. This example aligns signals by their name, then by their block path, and
then by their Simulink identifier.

alignMethods = [Simulink.sdi.AlignType.SignalName
 Simulink.sdi.AlignType.BlockPath
 Simulink.sdi.AlignType.SID];

Compare the simulation data in your two runs, using the alignment criteria you specified. The
comparison uses a small time tolerance to account for the effect of differences in the step size used
by the solver on the transition of the square wave input.

diffResults = Simulink.sdi.compareRuns(runIDTs1,runIDTs2,'align',alignMethods,...
 'timetol',0.005);

You can use the getResultByIndex function to access the comparison results for the aligned
signals in the runs you compared. You can use the Count property of the
Simulink.sdi.DiffRunResult object to set up a for loop to check the Status property for each
Simulink.sdi.DiffSignalResult object.

numComparisons = diffResults.count;

for k = 1:numComparisons
 resultAtIdx = getResultByIndex(diffResults,k);

 sigID1 = resultAtIdx.signalID1;
 sigID2 = resultAtIdx.signalID2;

 sig1 = Simulink.sdi.getSignal(sigID1);
 sig2 = Simulink.sdi.getSignal(sigID2);

 displayStr = 'Signals %s and %s: %s \n';
 fprintf(displayStr,sig1.Name,sig2.Name,resultAtIdx.Status);
end

3 Functions

3-16

Signals q, rad/sec and q, rad/sec: OutOfTolerance
Signals alpha, rad and alpha, rad: OutOfTolerance
Signals Stick and Stick: WithinTolerance

Input Arguments
runID1 — Baseline run identifier
integer

Numeric identifier for the baseline run in the comparison, specified as a run ID that corresponds to a
run in the Simulation Data Inspector. The Simulation Data Inspector assigns run IDs when runs are
created. You can get the run ID for a run by using the ID property of the Simulink.sdi.Run object,
the Simulink.sdi.getAllRunIDs function, or the Simulink.sdi.getRunIDByIndex function.

runID2 — Identifier for run to compare
integer

Numeric identifier for the run to compare, specified as a run ID that corresponds to a run in the
Simulation Data Inspector. The Simulation Data Inspector assigns run IDs when runs are created. You
can get the run ID for a run by using the ID property of the Simulink.sdi.Run object, the
Simulink.sdi.getAllRunIDs function, or the Simulink.sdi.getRunIDByIndex function.

Name-Value Pair Arguments

Specify optional comma-separated pairs of Name,Value arguments. Name is the argument name and
Value is the corresponding value. Name must appear inside quotes. You can specify several name and
value pair arguments in any order as Name1,Value1,...,NameN,ValueN.
Example: 'abstol',x,'align',alignOpts

Align — Signal alignment options
string array | character vector array

Signal alignment options, specified as the comma-separated pair consisting of 'Align' and a string
array or array of character vectors.

Array specifying alignment options to use for pairing signals from the runs being compared. The
Simulation Data Inspector aligns signals first by the first element in the array, then by the second
element in the array, and so on. For more information, see “Signal Alignment” (Simulink).

Value Aligns By
Simulink.sdi.AlignType.BlockPath Path to the source block for the signal
Simulink.sdi.AlignType.SID Simulink identifier “Simulink Identifiers” (Simulink)
Simulink.sdi.AlignType.SignalName Signal name
Simulink.sdi.AlignType.DataSource Path of the variable in the MATLAB® workspace

Example: [Simulink.sdi.AlignType.SignalName,Simulink.sdi.AlignType.SID] specifies
signal alignment by name and then by SID.

AbsTol — Absolute tolerance for comparison
0 (default) | scalar

 Simulink.sdi.compareRuns

3-17

Positive-valued global absolute tolerance used for all signals in the run comparison, specified as the
comma-separated pair consisting of 'AbsTol' and a scalar. For more information about how
tolerances are used in comparisons, see “Tolerance Specification” (Simulink).
Example: 0.5
Data Types: double

RelTol — Relative tolerance for comparison
0 (default) | scalar

Positive-valued global relative tolerance used for all signals in the run comparison, specified as the
comma-separated pair consisting of 'RelTol' and a scalar. The relative tolerance is expressed as a
fractional multiplier. For example, 0.1 specifies a 10 percent tolerance. For more information about
how the relative tolerance is applied in the Simulation Data Inspector, see “Tolerance Specification”
(Simulink).
Example: 0.1
Data Types: double

TimeTol — Time tolerance for comparison
0 (default) | scalar

Positive-valued global time tolerance used for all signals in the run comparison, specified as the
comma-separated pair consisting of 'TimeTol' and a scalar. Specify the time tolerance in units of
seconds. For more information about tolerances in the Simulation Data Inspector, see “Tolerance
Specification” (Simulink).
Example: 0.2
Data Types: double

DataType — Comparison sensitivity to signal data types
'MustMatch'

Specify the name-value pair 'DataType','MustMatch' when you want the comparison to be
sensitive to data type mismatches in compared signals. When you specify this name-value pair, the
algorithm compares the data types for aligned signals before synchronizing and comparing the signal
data.

The Simulink.sdi.compareRuns function does not compare the data types of aligned signals
unless you specify this name-value pair. The comparison algorithm can compare signals with different
data types.

When signal data types do not match, the Status property of the
Simulink.sdi.DiffSignalResult object for the result is set to DataTypeMismatch.

When you specify that data types must match and configure the comparison to stop on the first
mismatch, a data type mismatch stops the comparison. A stopped comparison may not compute
results for all signals.

Time — Comparison sensitivity to signal time vectors
'MustMatch'

Specify the name-value pair 'Time','MustMatch' when you want the comparison to be sensitive to
mismatches in the time vectors of compared signals. When you specify this name-value pair, the

3 Functions

3-18

algorithm compares the time vectors of aligned signals before synchronizing and comparing the
signal data.

Comparisons are not sensitive to differences in signal time vectors unless you specify this name-value
pair. For comparisons that are not sensitive to differences in the time vectors, the comparison
algorithm synchronizes the signals prior to the comparison. For more information about how
synchronization works, see “How the Simulation Data Inspector Compares Data” (Simulink).

When the time vectors for signals do not match, the Status property of the
Simulink.sdi.DiffSignalResult object for the result is set to TimeMismatch.

When you specify that time vectors must match and configure the comparison to stop on the first
mismatch, a time vector mismatch stops the comparison. A stopped comparison may not compute
results for all signals.

StartStop — Comparison sensitivity to signal start and stop times
'MustMatch'

Specify the name-value pair 'StartStop','MustMatch' when you want the comparison to be
sensitive to mismatches in signal start and stop times. When you specify this name-value pair, the
algorithm compares the start and stop times for aligned signals before synchronizing and comparing
the signal data.

When the start times and stop times do not match, the Status property of the
Simulink.sdi.DiffSignalResult object for the result is set to StartStopMismatch.

When you specify that start and stop times must match and configure the comparison to stop on the
first mismatch, a start or stop time mismatch stops the comparison. A stopped comparison may not
compute results for all signals.

StopOnFirstMismatch — Whether comparison stops on first detected mismatch
'Metadata' | 'Any'

Whether the comparison stops without comparing remaining signals on the first detected mismatch,
specified as the comma-separated pair consisting of 'StopOnFirstMismatch' and 'Metadata' or
'Any'. A stopped comparison may not compute results for all signals, and can return a mismatched
result more quickly.

• Metadata — A mismatch in metadata for aligned signals causes the comparison to stop. Metadata
comparisons happen before comparing signal data.

The Simulation Data Inspector always aligns signals and compares signal units. When you
configure the comparison to stop on the first mismatch, an unaligned signal or mismatched units
always causes the comparison to stop. You can specify additional name-value pairs to configure
the comparison to check and stop on the first mismatch for additional metadata, such as signal
data type, start and stop times, and time vectors.

• Any — A mismatch in metadata or signal data for aligned signals causes the comparison to stop.

Output Arguments
diffResult — Comparison results
Simulink.sdi.DiffRunResult

Comparison results, returned as a Simulink.sdi.DiffRunResult object.

 Simulink.sdi.compareRuns

3-19

Limitations
The Simulation Data Inspector does not support comparing:

• Signals of data types int64 or uint64.
• Variable-size signals.

See Also
Simulink.sdi.DiffRunResult | Simulink.sdi.DiffSignalResult |
Simulink.sdi.compareSignals | Simulink.sdi.getRunCount |
Simulink.sdi.getRunIDByIndex | getResultByIndex

Topics
“Inspect and Compare Data Programmatically” (Simulink)
“Compare Simulation Data” (Simulink)
“How the Simulation Data Inspector Compares Data” (Simulink)

Introduced in R2011b

3 Functions

3-20

visionhdlframetoregions
Convert video frame dimensions into tiled regions of interest

Syntax
regions = visionhdlframetoregions(activePixelsPerLine,activeLines,
numHorTiles,numVerTiles)
regions = visionhdlframetoregions(activePixelsPerLine,activeLines,
numHorTiles,numVerTiles,'numPix',4)
regions = visionhdlframetoregions(activePixelsPerLine,activeLines,
numHorTiles,numVerTiles,'fillType','full')

Description
regions = visionhdlframetoregions(activePixelsPerLine,activeLines,
numHorTiles,numVerTiles) converts an activePixelsPerLine-by-activeLines video frame
into numHorTiles×numVerTiles nonoverlapping regions valid for vertical reuse with the ROI
Selector block or the visionhdl.ROISelector System object. By default, the function returns a set
of equally sized regions and ignores any remainder pixels at the right and bottom of the frame.

regions = visionhdlframetoregions(activePixelsPerLine,activeLines,
numHorTiles,numVerTiles,'numPix',4) returns regions that are compatible with multipixel
streaming. You can set numPix to 4 or 8.

regions = visionhdlframetoregions(activePixelsPerLine,activeLines,
numHorTiles,numVerTiles,'fillType','full') returns regions that cover the entire frame
size. If remainder pixels at the right and bottom of the frame exist, the function extends the right and
bottom regions to include the remainder pixels.

In this diagram, the frame on the left shows the default behavior of the function. The frame is 160-
by-120 pixels, divided into five horizontal and three vertical tiles. The function returns a set of fifteen
30-by-40 pixel regions and ignores the 10 remainder pixels at the right of the frame (blue).

In this diagram, the frame on the right shows the regions returned when you specify the
'filltype','full' argument. Similar to the previous case, the frame is 160-by-120 pixels, divided
into five horizontal and three vertical tiles. The function returns twelve 30-by-40 pixel regions, and
three 40-by-40 regions that include the remainder pixels at the right of the frame.

 visionhdlframetoregions

3-21

Examples

Select Regions for Vertical Reuse

This example shows how to divide a frame into tiled regions of interest (ROIs) and use those regions
to configure the ROI Selector block for vertical reuse.

Vertical reuse means dividing each frame into vertically-aligned regions where each column of
regions shares a pixel stream. This arrangement enables parallel processing of each column, and the
reuse of downstream processing logic for each region in the column.

Set up the size of the frame.

frmActiveLines = 240;
frmActivePixels = 320;

Divide the frame into equally-sized vertically-aligned regions, or tiles. The
visionhdlframetoregions function returns an array of such regions, where each region is defined
by four coordinates, and is of the form [hPos vPos hSize vSize]. These tile counts divide evenly into
the frame dimensions, so no remainder pixels exist. The output regions cover the entire frame.

numHorTiles = 2;
numVerTiles = 2;
regions = visionhdlframetoregions(frmActivePixels,frmActiveLines,numHorTiles,numVerTiles)

regions =

 1 1 160 120
 161 1 160 120
 1 121 160 120
 161 121 160 120

The ROI Selector block in the Simulink model has the Reuse output ports for vertically aligned
regions parameter selected, and uses the regions variable to define its output streams. The block
has one output pixel stream per column of regions.

3 Functions

3-22

open_system('TiledROIHDL')

The start and end signals define each region in the pixel stream. When you run the model, you can
see the output tiled regions changing in the Left Viewer and Right Viewer windows. The example
performs opposite gamma correction operations on the left and right tiles, and then reassembles the
four tiles into a complete frame by manipulating the pixelcontrol signals.

The blanking interval required by the downstream processing algorithm must be less than the
interval between tiles. The blanking interval after each region is less than one line of pixels, so
operations that require a vertical blanking interval, like those that use a line buffer, do not work. The
gamma correction operation uses a lookup table that does not require a blanking interval.

sim('TiledROIHDL')

 visionhdlframetoregions

3-23

3 Functions

3-24

 visionhdlframetoregions

3-25

Input Arguments
activePixelsPerLine — Number of pixels in horizontal line of active input frame
positive integer

Number of pixels in a horizontal line of the active input frame, specified as a positive integer. The
function divides this dimension into numHorTiles columns. Any remainder pixels from this division
are handled according to the 'filltype' setting.
Data Types: single | double | int8 | int16 | int32 | int64 | uint8 | uint16 | uint32 | uint64 |
fi

activeLines — Number of horizontal lines in active input frame
positive integer

Number of horizontal lines in the active input frame, specified as a positive integer. The function
divides this dimension into numVerTiles rows. Any remainder pixels from this division are handled
according to the 'filltype' setting.
Data Types: single | double | int8 | int16 | int32 | int64 | uint8 | uint16 | uint32 | uint64 |
fi

numHorTiles — Number of tiles in the horizontal direction
positive integer

3 Functions

3-26

Number of tiles in the horizontal direction, specified as a positive integer. The function returns
numHorTiles×numVerTiles regions. This value must be in the range [1, 16].
Data Types: single | double | int8 | int16 | int32 | int64 | uint8 | uint16 | uint32 | uint64 |
fi

numVerTiles — Number of tiles in the vertical direction
positive integer

Number of tiles in the vertical direction, specified as a positive integer. The function returns
numHorTiles×numVerTiles regions. This value must be in the range [1, 1024].
Data Types: single | double | int8 | int16 | int32 | int64 | uint8 | uint16 | uint32 | uint64 |
fi

Output Arguments
regions — Tiled regions of interest
numHorTiles×numVerTiles-by-4 matrix

Tiled regions of interest, returned as a numHorTiles×numVerTiles-by-4 matrix. Each region is
represented by four positive integers that define the coordinates of the top-left corner and
dimensions of the region, [hPos vPos hSize vSize]. Use these regions to configure the ROI
Selector block or visionhdl.ROISelector System object for vertical reuse. Regions in each
column share an output pixel stream of the block or System object.

See Also
Blocks
ROI Selector

Objects
visionhdl.ROISelector

Introduced in R2020b

 visionhdlframetoregions

3-27

visionhdlsetup
Set up model parameters for HDL code generation for streaming video

Syntax
visionhdlsetup(modelname)

Description
visionhdlsetup(modelname) sets the parameters of a Simulink model specified by modelname, to
the recommended values for HDL code generation for streaming video designs. Use this function
instead of hdlsetup.

Open the model before you call this function. If you do not have an HDL Coder license, this function
returns a warning. After you call this function, you can modify any of HDL Coder parameters using
set_param or Model Parameters > HDL Code Generation.

When you generate HDL code for a model that you have configured using the visionhdlsetup
function, in the HDL Code Generation Check Report there is a warning about BalanceDelays.

'BalanceDelays' is set to 'Off' for the model.

This warning is acceptable since Vision HDL Toolbox blocks do not participate in automatic pipelining
or delay balancing during HDL code generation.

Examples

Configure a Model for HDL Code Generation with Streaming Video

Set model parameters to recommended values for HDL code generation for streaming video designs.

Open a model.

open_system('MyHDLModel');

Call visionhdlsetup to configure the model.

visionhdlsetup('MyHDLModel');

Input Arguments
modelname — Simulink model to configure
character vector | string

Simulink model to configure, specified as a character vector or string. The model must be loaded
before you call this function.
Data Types: char | string

3 Functions

3-28

See Also
hdlsetup

Introduced in R2019b

 visionhdlsetup

3-29

Apps and Tools

4

Simulation Data Inspector
Inspect and compare data and simulation results to validate and iterate model designs

Description
The Simulation Data Inspector visualizes and compares multiple kinds of data.

Using the Simulation Data Inspector, you can inspect and compare time series data at multiple stages
of your workflow. This example workflow shows how the Simulation Data Inspector supports all
stages of the design cycle:

1 “View Data in the Simulation Data Inspector” (Simulink).

Run a simulation in a model configured to log data to the Simulation Data Inspector, or import
data from the workspace or a MAT-file. You can view and verify model input data or inspect
logged simulation data while iteratively modifying your model diagram, parameter values, or
model configuration.

2 “Inspect Simulation Data” (Simulink).

Plot signals on multiple subplots, zoom in and out on specified plot axes, and use data cursors to
understand and evaluate the data. “Create Plots Using the Simulation Data Inspector” (Simulink)
to tell your story.

3 “Compare Simulation Data” (Simulink)

Compare individual signals or simulation runs and analyze your comparison results with relative,
absolute, and time tolerances. The compare tools in the Simulation Data Inspector facilitate
iterative design and allow you to highlight signals that do not meet your tolerance requirements.
For more information about the comparison operation, see “How the Simulation Data Inspector
Compares Data” (Simulink).

4 “Save and Share Simulation Data Inspector Data and Views” (Simulink).

Share your findings with others by saving Simulation Data Inspector data and views.

You can also harness the capabilities of the Simulation Data Inspector from the command line. For
more information, see “Inspect and Compare Data Programmatically” (Simulink).

4 Apps and Tools

4-2

Open the Simulation Data Inspector
• Simulink Toolstrip: On the Simulation tab, under Review Results, click Data Inspector.
• Click the streaming badge on a signal to open the Simulation Data Inspector and plot the signal.
• MATLAB command prompt: Enter Simulink.sdi.view.

Examples

Apply a Tolerance to a Signal in Multiple Runs

You can use the Simulation Data Inspector programmatic interface to modify a parameter for the
same signal in multiple runs. This example adds an absolute tolerance of 0.1 to a signal in all four
runs of data.

First, clear the workspace and load the Simulation Data Inspector session with the data. The session
includes logged data from four simulations of a Simulink® model of a longitudinal controller for an
aircraft.

Simulink.sdi.clear
Simulink.sdi.load('AircraftExample.mldatx');

Use the Simulink.sdi.getRunCount function to get the number of runs in the Simulation Data
Inspector. You can use this number as the index for a for loop that operates on each run.

count = Simulink.sdi.getRunCount;

Then, use a for loop to assign the absolute tolerance of 0.1 to the first signal in each run.

 Simulation Data Inspector

4-3

for a = 1:count
 runID = Simulink.sdi.getRunIDByIndex(a);
 aircraftRun = Simulink.sdi.getRun(runID);
 sig = getSignalByIndex(aircraftRun,1);
 sig.AbsTol = 0.1;
end

• “View Data in the Simulation Data Inspector” (Simulink)
• “Inspect Simulation Data” (Simulink)
• “Compare Simulation Data” (Simulink)
• “Iterate Model Design Using the Simulation Data Inspector” (Simulink)

Programmatic Use
Simulink.sdi.view opens the Simulation Data Inspector from the MATLAB command line.

See Also
Functions
Simulink.sdi.clear | Simulink.sdi.clearPreferences | Simulink.sdi.snapshot

Topics
“View Data in the Simulation Data Inspector” (Simulink)
“Inspect Simulation Data” (Simulink)
“Compare Simulation Data” (Simulink)
“Iterate Model Design Using the Simulation Data Inspector” (Simulink)

Introduced in R2010b

4 Apps and Tools

4-4

	Blocks
	Bilateral Filter
	Birds-Eye View
	Chroma Resampler
	Closing
	Color Space Converter
	Corner Detector
	HV Counter
	Demosaic Interpolator
	Dilation
	Edge Detector
	Erosion
	FIL Frame To Pixels
	FIL Pixels To Frame
	Frame To Pixels
	Gamma Corrector
	Grayscale Closing
	Grayscale Dilation
	Grayscale Erosion
	Grayscale Opening
	Histogram
	Image Filter
	Image Statistics
	Lookup Table
	Measure Timing
	Median Filter
	Opening
	Pixel Control Bus Creator
	Pixel Control Bus Selector
	Pixels To Frame
	Pixel Stream FIFO
	ROI Selector
	Pixel Stream Aligner
	Line Buffer

	System Objects
	visionhdl.BilateralFilter
	visionhdl.BirdsEyeView
	visionhdl.ChromaResampler
	visionhdl.ChromaResampler.step
	visionhdl.ColorSpaceConverter
	visionhdl.ColorSpaceConverter.step
	visionhdl.CornerDetector
	visionhdl.Closing
	visionhdl.GrayscaleClosing
	visionhdl.GrayscaleClosing.step
	visionhdl.DemosaicInterpolator
	visionhdl.DemosaicInterpolator.step
	visionhdl.Dilation
	visionhdl.Dilation.step
	visionhdl.GrayscaleDilation
	visionhdl.GrayscaleDilation.step
	visionhdl.EdgeDetector
	visionhdl.EdgeDetector.step
	visionhdl.Erosion
	visionhdl.Erosion.step
	visionhdl.GrayscaleErosion
	visionhdl.GrayscaleErosion.step
	visionhdl.FrameToPixels
	visionhdl.FrameToPixels.step
	visionhdl.GammaCorrector
	visionhdl.Histogram
	visionhdl.HVCounter
	visionhdl.ImageFilter
	visionhdl.ImageFilter.step
	visionhdl.ImageStatistics
	visionhdl.ImageStatistics.step
	visionhdl.LineBuffer
	visionhdl.LookupTable
	visionhdl.MeasureTiming
	visionhdl.MeasureTiming.step
	visionhdl.MedianFilter
	visionhdl.MedianFilter.step
	visionhdl.Opening
	visionhdl.Opening.step
	visionhdl.GrayscaleOpening
	visionhdl.GrayscaleOpening.step
	visionhdl.PixelStreamAligner
	visionhdl.PixelsToFrame
	visionhdl.PixelsToFrame.step
	visionhdl.ROISelector

	Functions
	getparamfromfrm2pix
	pixelcontrolbus
	pixelcontrolsignals
	pixelcontrolstruct
	Simulink.sdi.compareRuns
	visionhdlframetoregions
	visionhdlsetup

	Apps and Tools
	Simulation Data Inspector

